研究生: |
賴奕翔 Lai Yi-Xiang |
---|---|
論文名稱: |
六連桿平行滑動機之五軸機械性能分析與設計程序 5 - DOF Kinematic Performance Analysis and A Design Procedure for Hexaglide Machine Tools |
指導教授: |
彭明輝
Perng Ming-Hwei |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
論文頁數: | 133 |
中文關鍵詞: | 平行滑動機 、史都華平台 、平行機構 、設計 、機械性能 |
外文關鍵詞: | hexaglide, stewart, parallel mechanism, design, performance |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
六連桿的平行機構,為六根連接桿連接上下的可動板(platform)和固定板(base),和傳統串聯式機器人相較之下,有下列主要的優點:(1)由於驅動桿是二力構件只受軸向力,因此剛性較好。(2)因為平行式機構,誤差不會累積。(3)因為慣性質量及轉動慣性較小,所以加速度高。綜合前述特質,六連桿的平行機構主要是針對傳統的串聯式機構的缺點來尋求改善和突破。
而本人所研究的Hexaglide型平行機構(以下簡稱Hexaglide),擁有平行機構高剛性、低慣性、高加速度的特性之外。其在驅動器方面是以線性滑軌驅動來取代傳統平行機構的telescope結構,其組合方式多為傳統串聯式機構的標準件;因此,驅動器方面的技術成熟且成本可降低,比傳統平行機構少了一些待突破的瓶頸(驅動器方面)。此外,Hexaglide的軌道往X方向延伸,如果軌道夠長,Hexaglide的工作空間可以往X方向做延伸,增加了在加工及組裝時的優勢,例如:機翼的加工和生產線的組裝,都需要一特定方向具有相當大的工作空間來配合。
在平行機構的性能分析中,工作空間分析、機械性能分析、奇異行為是三個機構研發的重要課題。工作空間無法清楚表示、工作空間可能存在奇異點、機械效率不明和欠缺有系統性的設計程序,這些種種的因素使得工業界對於平行機構裹足不前,無法使平行機構發揮其優勢。
而工作空間數值解的完整分析已由陳明弘發展完成,而關於機械性能指標、奇異點以及工作空間近似解的分析卻從未有人深入加以探討,是故必須發展出一套機械效能及奇異點的分析工具,協助瞭解Hexaglide的特性,進而發展一套系統性的設計程序來作為Hexaglide發展初期的研究重點。
在本人論文中首先定義機械效能、剛性、進給速率,三種機械性能指標來分析Hexaglide在工作空間中的表現及避開奇異點。在工作空間分析的部分;由逆向運動學出發,尋找其三軸工作空間的解析解與五軸工作空間的近似解。並且利用數值解的方式,求出連桿間干涉的現象。
最後利用上述的工具,以幾何關係的觀念,設計出一套系統化的設計程序,使得,Hexaglide可工作的空間充分了利用了機械性能良好的部分。此方法不但能讓可工作的空間大小符合要求,且機械性能也符合要求。
[1] “A MACHINE FOR THE 21th CENTRY,” Machinery and production engineering, pp.20-23, 1995.
[2]D. Stewart, “A platform with six degree of freedom,” Proc. Institution of Mechanical Engineers, Vol. 108, part 1, No. 15, pp. 371-386, 1965.
[3] M. Hebsacker, T.Treib, O. Zirn, and M. Honegger, “Hexaglide 6 dof and Triaglide 3 dof parallel manipulators,” Position Paper PKM at the ETH Zürich and Mikron SA.
[4] M. Hebsacker, A. Codourey, and E. Burdet, “Adaptive control of the Hexaglide, a 6 dof parallel manipulator,” Proceedings of the 1997 IEEE International Conference on Robotics and Automation, pp. 43-548, 1997.
[5] T. Shibukawa, T. Tooyama, K. Hattori, and H. Ohta, “Development of parallel mechanism based milling machine [HexaM],” Proceedings of the ASME, Manufacturing Science and Engineering Division, Vol. 8, pp. 691-698, 1998.
[6] Y. K. Byun, “Analysis of a novel 6-dof, 3-PPSP of parallel manipulator,” The International Journal of Robotics Research, Vol. 16, No. 6, pp. 859-872, 1997.
[7] B. H. Ronen, S. Moshe, and D. Shlomo,“Kinematics, dynamics and construction of a planarly actuated parallel robot,”Robotics and Computer-Integrated Manufacturing, Vol. 14, No. 2, pp. 163-172, 1998.
[8] K. H. Hunt, “Structure kinematics of an parallel actuated robot arms,” Transactions of ASME, Journal of mechanics, Transitions, and Automation in Design, Vol. 105, pp. 705-712, 1983.
[9] E. F. Fichter, “A Stewart platform-based manipulator: general theory and practical construction,” The International Journal of Robotics Research, Vol 5, No. 2, pp.157-186, 1986.
[10] J. P. Merlet, “Singular configurations of parallel manipulators and Grassmann geometry,” The International Journal of Robotics Research, Vol. 8, No. 5, pp. 45-56, 1989.
[11] J. P. Merlet, “Determination of the orientation workspace of parallel manipulators,” Journal of Intelligent and Robotic Systems, Vol. 13, No. 2, pp. 143-160, 1995.
[12] J. P. Merlet, “Designing a parallel manipulator for a specific workspace,” The International of Robotics Research, Vol. 16, No. 4, pp. 545-556, 1997.
[13] J. P. Merlet, “Determination of 6D workspaces of Gough-Type parallel manipulator and comparison between different geometries,” The International Journal of Robotics Research, Vol. 18, n 9, pp. 902-916, 1999.
[14] C. M. Gosselin, “Determination of the workspace of 6-dof parallel manipulators,” ASME Design Automation Conference, Montreal, Sept. 17-20, pp. 321-326, 1989.
[15] Z. Ji, “Workspace analysis of Stewart platforms via Vertex Space,” Journal of Robotic Systems, Vol. 11, No. 7, pp. 631-639, 1994.
[16] Z. Ji, “Analysis of design parameters in platform manipulators,” Journal of Mechanic Design, Vol. 118, No. 4, pp. 631-639, 1996.
[17] J. H. Shim, D. S. Kwon, and H. S. Cho, “Kinematic analysis and design of a six d.o.f 3-PRPS in-parallel manipulator,” Robotica, Vol. 17, No. 3, pp. 269-281, 1999.
[18] M. K. Lee and K. W. Park, “Kinematic and dynamic analysis of A double parallel manipulator for enlarging workspace and avoiding singularities,” IEEE Transactions on Robotics and Automation, Vol. 15, No. 6, pp. 1024-1034, 1999.
[19] M. H. Perng and L. Hsiao, “Inverse kinematic solutions for a fully parallel robot with singularity avoidance,” Int. J. Robotics Res., v18, n6, pp. 575-583, 1999.
[20] K. E. Zanganeh and J. Angeles, “Kinematic isotropy and the optimum design of parallel manipulators,”Int. J. Robotics Res.,v16,n2,pp.185-197,1997.
[21] P. Lancaster and M. Tismenetsky, The Theory of Matrices, New York: Academic Press, 1985.
[22] B. S. El-Khasawneh and P. M. Ferreira, “Computation of stiffness and stiffness bounds for parallel link manipulators,” Int. J. Machine Tools & Manufacture, v39, n2, pp. 321-342, 1999.
[23] P. Lancaster and M. Tismenetsky, The Theory of Matrices, New York: Academic Press, 1985.
[24] 陳明弘,六連桿平行滑動機之三軸和五軸工作空間分析及最佳構型設計, 清華大學動力機械工程學系碩士論文, 2000
[25] M. Z. A. Majid, Z. Huang and Y. L.Yao, “Workspace analysis of a six-degrees of freedom, three-prismatic-prismatic-spheric-revolute parallel manipulator,” Int. J. Adv. Manuf. Technol., 16:441-449, 2000.
[26] 蔡永生,史都華平台五軸機械性能分析與設計程序, 清華大學動力機械工程學系碩士論文, 2000