研究生: |
李偉弘 Lee, Wei-Hung |
---|---|
論文名稱: |
用於真空蒸鍍鈣鈦礦光伏元件之電荷傳輸與界面層 Carrier Transporting and Interfacial Layers for Vacuum Deposited Perovskite Photovoltaics |
指導教授: |
林皓武
Lin, Hao-Wu |
口試委員: |
朱治偉
Chu, Chih-Wei 周鶴修 Chou, Ho-Hsiu 張志宇 Chang, Chih-Yu 陳昭宇 Chen, Chao-Yu |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 鈣鈦礦光伏元件 、傳輸層 、界面層 |
外文關鍵詞: | Peroskitephotovoltaics, Transporting, Interfacial |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究在順序型真空製備的鈣鈦礦太陽能電池的基礎下,對傳輸層進行改良,包括不同電洞傳輸層的搭配,電子界面層的應用,以及對鈣鈦礦的組成進行調整,製備成元件後最高能量轉換效率可達到18.8%。
第一章,簡介太陽能電池的發展歷史,並且概述有機金屬鈣鈦礦太陽能電池的研究發展與現況。第二章,概述有機金屬鈣鈦礦太陽能電池之工作原理、光電特性,以及有機材料的準備與分析和元件的製備與量測方法。
第三章,我們使用不同電洞傳輸層如poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)、N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB)、Tris[4-(5-phenylthiophen-2-yl)phenyl]amine (TPTPA)和Poly[N,N′-bis(4-butylphenyl)-N,N′-bisphenylbenzidine] (Poly-TPD),與順序型真空製備鈣鈦礦薄膜搭配並做成元件,探討各種電洞傳輸層對元件效率的影響。其中,以TPTPA做為電洞傳輸層之元件具有最佳表現,其短路電流為22.1 mA/cm2,開路電壓為1.06 V,填充因子為0.71,能量轉換效率達16.7%。我們也將相同元件放在室內中,以室內照明常見的T5螢光燈管為量測光源,量測不同室內光強度下其效率參數。元件於1000 lux時元件的工作電壓為0.73 V,工作電流密度為146 μA/cm2,功率密度為99.0 μW/cm2,能量轉換效率為31.4%,且具有優異的元件穩定度。
第四章,我們以上述TPTPA的應用做為基礎,引入有機小分子如 1,3,5-Tri(m-pyridin-3-ylphenyl)benzene (TmPyPB)、 4,6-Bis(3,5-di(pyridin-4-yl)phenyl)-2-methylpyrimidine (B4PyMPM) 、 Tris(2,4,6-trimethyl-3-(pyridin-3-yl)phenyl)borane (3TPYMB) 、 1,4,5,8-Naphthalenetetracarboxylic dianhydride (NTCDA) 和 Bathophenanthroline (Bphen) 做為電子界面層,透過分析儀器來探討其效率增益的機制。我們發現到若小分子具有吡啶 (pyridine) 基團如 TmPyPB、B4PyMPM 和3TPYMB,則可以增加元件效率,其中以3TPYMB做為電子界面層之元件具有最佳表現,其短路電流為22.7 mA/cm2,開路電壓為1.07 V,填充因子為0.77,效率達18.8%。若使用不具吡啶基團的分子如NTCDA和Bphen,則有負面的影響而造成元件效率下降。
第五章,我們調變鈣鈦礦主動層的組成,以PbI2和PbCl2莫耳比1:1共蒸鍍膜層進行順序型真空製程反應成鈣鈦礦薄膜並製備成元件,此外也探討退火時間長短對元件效率的影響,以退火溫度攝氏100度加熱3分鐘的元件表現最好,其短路電流為22.7 mA/cm2,開路電壓為1.04 V,填充因子為0.71,效率達16.6%。
最後,將綜合所有數據研究做個總結論,提供未來學者研究之參考依據。
In this thesis, we focus on the modification of transporting layers, such as utilization of various hole transporting layers (HTLs), applications of electron interfacial layers (EILs), and adjustment of the composition of the perovskites.
In the first part of this thesis, we briefly review the development of photovoltaics and organometallic perovskite solar cells.
In the second part of thesis, we explicate the operation principle and characteristics of organometallic perovskite solar cells.
In the third part, different HTLs used in organometallic perovskite solar cells were studied. The device with tris[4-(5-phenylthiophen-2-yl)phenyl]amine) (TPTPA) as HTL exhibited the highest power conversion efficiency (PCE) of 16.7% with a short circuit current density (Jsc) of 22.1 mA/cm2, an open circuit voltage (Voc) of 1.06 V and a fill factor (F.F.) of 0.71. Additionally, the device was also measured under 6500 K color temperature Philips T5 fluorescent lamp illumination. The device exhibited a PCE of 31.4% with a maximum power point current density (JMPP) of 146 μA/cm2, a maximum power point voltage (VMPP) of 0.73 V and maximum power density of 99.0 μW/cm2, corresponding to a PCE up to 31.4%.
In the fourth part, we demonstrate that the performance of perovskite solar cells can be boosted with sub-nm pyridine-containing small-molecule EILs such as TmPyPB, B4PyMPM and 3TPYMB. These vacuum-deposited sub-nm layers between perovskites and electron transport layers create a permanent dipole moment that improves the interfacial energy level alignment and facilitates a fast electron sweep-out. With 3TPYMB used as interfacial layer, the device exhibited a PCE of 18.8% with a Jsc of 22.1 mA/cm2, a Voc of 1.07 V and a F.F. of 0.77. However, as we utilized the non-pyridine-containing small-molecule EILs such as NTCDA or Bphen, it would have a poor effect on the performance of the devices. The device with Bphen as EIL exhibited a poor PCE of 9.31% compared with reference cell of 16.7%
In the fifth part, the composition of perovskite active layers was studied. Lead chloride (PbCl2) and lead iodide (PbI2) were co-evaporated and reacted with Methylammonium iodide (MAI) for transforming into the perovskites (MAPbI3-xClx). By tuning the appropriate post-annealing time, the device exhibited a PCE of 16.6% with a Jsc of 22.68 mA/cm2, a Voc of 1.04 V and a F.F. of 0.71.
Finally, a brief summary of this study is presented with some guidelines for the related future studies.
參考文獻
[1] A. E. Becquerel, Comptes Rendus de L´Academie des Sciences 1839, 9.
[2] http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
[3] C. E. Fritts, Am. J. Sci. 1883, 26, 465.
[4] R. P. S. W. Glunz, D. Biro, in Crystalline Silicon Solar Cells, Oxford, 2012.
[5] D. M. Chapin, C. S. Fuller, G. L. Pearson, Journal of Applied Physics 1954, 25, 676.
[6] V. G. A. Slade, in 15th International Photovoltaic Science and Engineering Conference, 2005.
[7] A. Descoeudres, Z. C. Holman, L. Barraud, S. Morel, S. D. Wolf, C. Ballif, IEEE Journal of Photovoltaics 2013, 3, 83.
[8] H. H. Li, Journal of Physical and Chemical Reference Data 1980, 9, 561.
[9] D. E. Carlson, C. R. Wronski, Applied Physics Letters 1976, 28, 671.
[10] Applied Physics Letters 2015, 106, 213902.
[11] https://www.greentechmedia.com/articles/read/First-Solar-Hits-Record-22.1-Conversion-Efficiency-For-CdTe-Solar-Cell.
[12] R. Kamada, T. Yagioka, S. Adachi, A. Handa, K. F. Tai, T. Kato, H. Sugimoto, "New world record Cu(In, Ga)(Se, S)<inf>2</inf> thin film solar cell efficiency beyond 22%", presented at 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), 5-10 June 2016, 2016.
[13] W. Shockley, H. J. Queisser, Journal of Applied Physics 1961, 32, 510.
[14] J. Zhao, Y. Li, G. Yang, K. Jiang, H. Lin, H. Ade, W. Ma, H. Yan, 2016, 1, 15027.
[15] S. Li, L. Ye, W. Zhao, S. Zhang, S. Mukherjee, H. Ade, J. Hou, Advanced Materials 2016, 28, 9423.
[16] M. K. Nazeeruddin, E. Baranoff, M. Grätzel, Solar Energy 2011, 85, 1172.
[17] S. Namba, Y. Hishiki, The Journal of Physical Chemistry 1965, 69, 774.
[18] J. Desilvestro, M. Graetzel, L. Kavan, J. Moser, J. Augustynski, Journal of the American Chemical Society 1985, 107, 2988.
[19] D. Duonghond, N. Serpone, M. Grätzel, Helvetica Chimica Acta 1984, 67, 1012.
[20] B. O'Regan, M. Gratzel, Nature 1991, 353, 737.
[21] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, Journal of the American Chemical Society 1993, 115, 6382.
[22] M. K. Nazeeruddin, P. Pechy, M. Gratzel, Chemical Communications 1997, 1705.
[23] M. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C.-H. Fischer, M. Grätzel, Inorganic Chemistry 1999, 38, 6298.
[24] B. A. Gregg, The Journal of Physical Chemistry B 2003, 107, 4688.
[25] C. W. Tang, Applied Physics Letters 1986, 48, 183.
[26] P. Peumans, S. R. Forrest, Applied Physics Letters 2002, 80, 338.
[27] M. Hiramoto, M. Suezaki, M. Yokoyama, Chemistry Letters 1990, 19, 327.
[28] M. Hiramoto, H. Fujiwara, M. Yokoyama, Journal of Applied Physics 1992, 72, 3781.
[29] J. Xue, B. P. Rand, S. Uchida, S. R. Forrest, Advanced Materials 2005, 17, 66.
[30] M. A. Green, A. Ho-Baillie, H. J. Snaith, Nat Photon 2014, 8, 506.
[31] V. M. Goldschmidt, Die Naturwissenschaften 1926, 14, 477.
[32] G. S. D. S. S. Joshi. , Nature 1945, 155, 2.
[33] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Journal of the American Chemical Society 2009, 131, 6050.
[34] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, Nanoscale 2011, 3, 4088.
[35] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, N.-G. Park, Scientific Reports 2012, 2, 591.
[36] L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, M. Grätzel, Journal of the American Chemical Society 2012, 134, 17396.
[37] J. M. Ball, M. M. Lee, A. Hey, H. J. Snaith, Energy & Environmental Science 2013, 6, 1739.
[38] M. Liu, M. B. Johnston, H. J. Snaith, Nature 2013, 501, 395.
[39] J.-Y. Jeng, Y.-F. Chiang, M.-H. Lee, S.-R. Peng, T.-F. Guo, P. Chen, T.-C. Wen, Advanced Materials 2013, 25, 3727.
[40] N. Pellet, P. Gao, G. Gregori, T.-Y. Yang, M. K. Nazeeruddin, J. Maier, M. Grätzel, Angewandte Chemie International Edition 2014, 53, 3151.
[41] N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, H. J. Snaith, Energy & Environmental Science 2014, 7, 3061.
[42] C.-W. Chen, H.-W. Kang, S.-Y. Hsiao, P.-F. Yang, K.-M. Chiang, H.-W. Lin, Advanced Materials 2014, 26, 6647.
[43] H.-S. Ko, J.-W. Lee, N.-G. Park, Journal of Materials Chemistry A 2015, 3, 8808.
[44] W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Science 2015, 348, 1234.
[45] S.-Y. Hsiao, H.-L. Lin, W.-H. Lee, W.-L. Tsai, K.-M. Chiang, W.-Y. Liao, C.-Z. Ren-Wu, C.-Y. Chen, H.-W. Lin, Advanced Materials 2016, 28, 7013.
[46] M. Saliba, S. Orlandi, T. Matsui, S. Aghazada, M. Cavazzini, J.-P. Correa-Baena, P. Gao, R. Scopelliti, E. Mosconi, K.-H. Dahmen, F. De Angelis, A. Abate, A. Hagfeldt, G. Pozzi, M. Graetzel, M. K. Nazeeruddin, 2016, 1, 15017.
[47] M. Hirasawa, T. Ishihara, T. Goto, Journal of the Physical Society of Japan 1994, 63, 3870.
[48] I. B. Koutselas, L. Ducasse, G. C. Papavassiliou, Journal of Physics: Condensed Matter 1996, 8, 1217.
[49] V. D’Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, A. Petrozza, 2014, 5, 3586.
[50] T. Ishihara, Journal of Luminescence 1994, 60, 269.
[51] K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, N. Miura, Solid State Communications 2003, 127, 619.
[52] T. C. Sum, N. Mathews, Energy & Environmental Science 2014, 7, 2518.
[53] V. Gonzalez-Pedro, E. J. Juarez-Perez, W.-S. Arsyad, E. M. Barea, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, Nano Letters 2014, 14, 888.
[54] C.-G. Wu, C.-H. Chiang, S. H. Chang, Nanoscale 2016, 8, 4077.
[55] H.-S. Kim, N.-G. Park, The Journal of Physical Chemistry Letters 2014, 5, 2927.
[56] H.-H. Wang, Q. Chen, H. Zhou, L. Song, Z. S. Louis, N. D. Marco, Y. Fang, P. Sun, T.-B. Song, H. Chen, Y. Yang, Journal of Materials Chemistry A 2015, 3, 9108.
[57] X. Bao, Y. Wang, Q. Zhu, N. Wang, D. Zhu, J. Wang, A. Yang, R. Yang, Journal of Power Sources 2015, 297, 53.
[58] W. M. M. Lin, D. Bozyigit, O. Yarema, V. Wood, The Journal of Physical Chemistry C 2016, 120, 12900.
[59] J. Seifter, Y. Sun, A. J. Heeger, Advanced Materials 2014, 26, 2486.
[60] J. You, L. Meng, T.-B. Song, T.-F. Guo, Y. Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, Y. Yang, Nat Nano 2016, 11, 75.
[61] H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 2014, 345, 542.
[62] H. Kim, K.-G. Lim, T.-W. Lee, Energy & Environmental Science 2016, 9, 12.
[63] W.-Y. Chen, L.-L. Deng, S.-M. Dai, X. Wang, C.-B. Tian, X.-X. Zhan, S.-Y. Xie, R.-B. Huang, L.-S. Zheng, Journal of Materials Chemistry A 2015, 3, 19353.
[64] W. Sun, S. Ye, H. Rao, Y. Li, Z. Liu, L. Xiao, Z. Chen, Z. Bian, C. Huang, Nanoscale 2016, 8, 15954.
[65] S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, C. Huang, Nano Letters 2015, 15, 3723.
[66] M. Jung, Y. C. Kim, N. J. Jeon, W. S. Yang, J. Seo, J. H. Noh, S. Il Seok, ChemSusChem 2016, 9, 2592.
[67] S. Seo, I. J. Park, M. Kim, S. Lee, C. Bae, H. S. Jung, N.-G. Park, J. Y. Kim, H. Shin, Nanoscale 2016, 8, 11403.
[68] Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, L. Zhang, J. Wang, F. Yan, S. Yang, Angewandte Chemie International Edition 2014, 53, 12571.
[69] W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, L. Han, Science 2015, 350, 944.
[70] P.-P. Zhang, Z.-J. Zhou, D.-X. Kou, S.-X. Wu, International Journal of Photoenergy 2017, 2017, 10.
[71] D. Zhao, M. Sexton, H.-Y. Park, G. Baure, J. C. Nino, F. So, Advanced Energy Materials 2015, 5, 1401855.
[72] K. Sun, P. Li, Y. Xia, J. Chang, J. Ouyang, ACS Applied Materials & Interfaces 2015, 7, 15314.
[73] D. Huang, T. Goh, J. Kong, Y. Zheng, S. Zhao, Z. Xu, A. D. Taylor, Nanoscale 2017, 9, 4236.
[74] Q. Wang, C.-C. Chueh, M. Eslamian, A. K. Y. Jen, ACS Applied Materials & Interfaces 2016, 8, 32068.
[75] J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-j. Kim, A. Sarkar, K. NazeeruddinMd, M. Gratzel, S. I. Seok, Nat Photon 2013, 7, 486.
[76] B.-S. Kim, T.-M. Kim, M.-S. Choi, H.-S. Shim, J.-J. Kim, Organic Electronics 2015, 17, 102.
[77] H. Kageyama, H. Ohishi, M. Tanaka, Y. Ohmori, Y. Shirota, Advanced Functional Materials 2009, 19, 3948.
[78] F. Wang, H. Yu, H. Xu, N. Zhao, Advanced Functional Materials 2015, 25, 1120.
[79] J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, N.-G. Park, Nat Nano 2014, 9, 927.
[80] W. Li, J. Fan, J. Li, Y. Mai, L. Wang, Journal of the American Chemical Society 2015, 137, 10399.
[81] D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J.-P. Correa Baena, J.-D. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, A. Hagfeldt, Science Advances 2016, 2.
[82] W. Yang, Y. Yao, C.-Q. Wu, Journal of Applied Physics 2015, 117, 095502.
[83] Y. Li, B. Ding, Q.-Q. Chu, G.-J. Yang, M. Wang, C.-X. Li, C.-J. Li, 2017, 7, 46141.
[84] L. Calió, S. Kazim, M. Grätzel, S. Ahmad, Angewandte Chemie International Edition 2016, 55, 14522.
[85] K. Naito, Chemistry of Materials 1994, 6, 2343.
[86] K. Naito, A. Miura, The Journal of Physical Chemistry 1993, 97, 6240.
[87] C.-G. Wu, C.-H. Chiang, Z.-L. Tseng, M. K. Nazeeruddin, A. Hagfeldt, M. Gratzel, Energy & Environmental Science 2015, 8, 2725.
[88] W. Yan, Y. Li, Y. Li, S. Ye, Z. Liu, S. Wang, Z. Bian, C. Huang, Nano Research 2015, 8, 2474.
[89] F. Hou, Z. Su, F. Jin, X. Yan, L. Wang, H. Zhao, J. Zhu, B. Chu, W. Li, Nanoscale 2015, 7, 9427.
[90] Q. Wang, Q. Dong, T. Li, A. Gruverman, J. Huang, Advanced Materials 2016, 28, 6734.
[91] C. Momblona, L. Gil-Escrig, E. Bandiello, E. M. Hutter, M. Sessolo, K. Lederer, J. Blochwitz-Nimoth, H. J. Bolink, Energy & Environmental Science 2016, 9, 3456.
[92] W. H. Nguyen, C. D. Bailie, E. L. Unger, M. D. McGehee, Journal of the American Chemical Society 2014, 136, 10996.
[93] J. W. Jo, M.-S. Seo, M. Park, J.-Y. Kim, J. S. Park, I. K. Han, H. Ahn, J. W. Jung, B.-H. Sohn, M. J. Ko, H. J. Son, Advanced Functional Materials 2016, 26, 4464.
[94] T.-Y. Chu, O.-K. Song, Applied Physics Letters 2007, 90, 203512.
[95] J. F. Randall, J. Jacot, Renewable Energy 2003, 28, 1851.
[96] M. F. K. Ruhle, L. M. Reindl, M. Kasemann, in 2012 9th International Multi-Conference on Systems, Signals and Devices (SSD), 2012, 1.
[97] Y. Jin, G. Chumanov, ACS Applied Materials & Interfaces 2015, 7, 12015.
[98] D. Liu, T. L. Kelly, Nat Photon 2014, 8, 133.
[99] C.-Y. Chen, J.-H. Chang, K.-M. Chiang, H.-L. Lin, S.-Y. Hsiao, H.-W. Lin, Advanced Functional Materials 2015, 25, 7064.
[100] C.-Y. Chen, Z.-H. Jian, S.-H. Huang, K.-M. Lee, M.-H. Kao, C.-H. Shen, J.-M. Shieh, C.-L. Wang, C.-W. Chang, B.-Z. Lin, C.-Y. Lin, T.-K. Chang, Y. Chi, C.-Y. Chi, W.-T. Wang, Y. Tai, M.-D. Lu, Y.-L. Tung, P.-T. Chou, W.-T. Wu, T. J. Chow, P. Chen, X.-H. Luo, Y.-L. Lee, C.-C. Wu, C.-M. Chen, C.-Y. Yeh, M.-S. Fan, J.-D. Peng, K.-C. Ho, Y.-N. Liu, H.-Y. Lee, C.-Y. Chen, H.-W. Lin, C.-T. Yen, Y.-C. Huang, C.-S. Tsao, Y.-C. Ting, T.-C. Wei, C.-G. Wu, The Journal of Physical Chemistry Letters 2017, 8, 1824.
[101] C.-Y. Chen, H.-Y. Lin, K.-M. Chiang, W.-L. Tsai, Y.-C. Huang, C.-S. Tsao, H.-W. Lin, Advanced Materials 2017, 29, 1605290.
[102] M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J. Hua, S. M. Zakeeruddin, J.-E. Moser, M. Grätzel, A. Hagfeldt, Nat Photon 2017, 11, 372.
[103] X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, X. Peng, Nature 2014, 515, 96.
[104] Q. Chen, H. Zhou, Y. Fang, A. Z. Stieg, T.-B. Song, H.-H. Wang, X. Xu, Y. Liu, S. Lu, J. You, P. Sun, J. McKay, M. S. Goorsky, Y. Yang, 2015, 6, 7269.
[105] Z. Liu, A. Zhu, F. Cai, L. Tao, Y. Zhou, Z. Zhao, Q. Chen, Y.-B. Cheng, H. Zhou, Journal of Materials Chemistry A 2017, 5, 6597.
[106] Y. Li, Y. Zhao, Q. Chen, Y. Yang, Y. Liu, Z. Hong, Z. Liu, Y.-T. Hsieh, L. Meng, Y. Li, Y. Yang, Journal of the American Chemical Society 2015, 137, 15540.
[107] G. Yang, C. Wang, H. Lei, X. Zheng, P. Qin, L. Xiong, X. Zhao, Y. Yan, G. Fang, Journal of Materials Chemistry A 2017, 5, 1658.
[108] S. M. Jain, Z. Qiu, L. Haggman, M. Mirmohades, M. B. Johansson, T. Edvinsson, G. Boschloo, Energy & Environmental Science 2016, 9, 3770.
[109] D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, O. M. Bakr, Science 2015, 347, 519.
[110] P. Schulz, L. L. Whittaker-Brooks, B. A. MacLeod, D. C. Olson, Y.-L. Loo, A. Kahn, Advanced Materials Interfaces 2015, 2, 1400532.
[111] P. Amsalem, J. Niederhausen, A. Wilke, G. Heimel, R. Schlesinger, S. Winkler, A. Vollmer, J. P. Rabe, N. Koch, Physical Review B 2013, 87, 035440.
[112] W.-H. Lee, C.-Y. Chen, C.-S. Li, S.-Y. Hsiao, W.-L. Tsai, M.-J. Huang, C.-H. Cheng, C.-I. Wu, H.-W. Lin, Nano Energy 2017, 38, 66.
[113] D. Kiermasch, P. Rieder, K. Tvingstedt, A. Baumann, V. Dyakonov, 2016, 6, 39333.
[114] T. Leijtens, G. E. Eperon, A. J. Barker, G. Grancini, W. Zhang, J. M. Ball, A. R. S. Kandada, H. J. Snaith, A. Petrozza, Energy & Environmental Science 2016, 9, 3472.
[115] C. Huang, N. Fu, F. Liu, L. Jiang, X. Hao, H. Huang, Solar Energy Materials and Solar Cells 2016, 145, 231.
[116] I. Borriello, G. Cantele, D. Ninno, Physical Review B 2008, 77, 235214.
[117] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, H. J. Snaith, Energy & Environmental Science 2014, 7, 982.
[118] S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, G. Cui, Chemistry of Materials 2014, 26, 1485.
[119] Q. Chen, N. De Marco, Y. Yang, T.-B. Song, C.-C. Chen, H. Zhao, Z. Hong, H. Zhou, Y. Yang, Nano Today 2015, 10, 355.
[120] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, S. I. Seok, Nano Letters 2013, 13, 1764.
[121] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Science 2013, 342, 341.
[122] C. Huang, N. Fu, F. Liu, L. Jiang, X. Hao, H. Huang, Solar Energy Materials and Solar Cells 2016, 145, Part 3, 231.