簡易檢索 / 詳目顯示

研究生: 王嘉淳
Wang, Chia-Chun
論文名稱: 開發可3D列印暨抗菌材料應用於傷口敷料研究
The Development of 3D-Printable and Antimicrobial Materials for Wound Dressing
指導教授: 王潔
Wang, Jane
口試委員: 朱一民
Chu, I-Min
衛子健
Wei, Tzu-Chien
姚少凌
Yao, Chao-Ling
費安東
Venault, Antoine
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 149
中文關鍵詞: 傷口敷料抗菌功能3D列印
外文關鍵詞: Wound dressing, Antimicrobial function, 3D-printing
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了促進傷口癒合並提高治療品質,本論文旨在開發新型的材料,該材料能夠順應傷口的形狀並具有抗菌性能,以提高患者的接受度並預防傷口感染。基於這些需求,本研究提出新的策略並開發具有3D列印和抗菌功能的材料。
    首先,將精氨酸以化學鍵結修飾於聚(癸二酸甘油酯)高分子鏈上,開發PGS-g-Arg接枝材料,其機械性能,水蒸氣透過率,抗菌功能和生物相容性均經由實驗得到了證實。材料的楊氏模數可透過不同精氨酸接枝率進行調控,另外,發現在7 ~ 13% 的精氨酸接枝率,PGS-g-Arg材料的拉伸強度與皮膚相似。這些材料的水蒸氣透過率範圍為6.1至10.3 g / m2 / h,顯示具有形成水氣屏障的功能並有助於傷口癒合。在精氨酸接枝率為7 % 的PGS-g-Arg材料上即具有95 % 以上的抗菌功能,並透過體外相容性實驗也確認這些開發材料具有生物相容性。
    其次,利用數位光處理積層製造技術 (DLP-AM) 的快速原型製造且高解析度的優勢來製備傷口敷料以順應傷口形狀。然而,光起使劑是此製造技術中的重要成分,若產生細胞毒性將限制了DLP-AM在傷口敷料中的應用。因此,針對應用於DLP-AM的光起始劑進行了深入研究。將4種常見的光起使劑與光固化材料結合,並通過探索聚合條件,機械性能和生物相容性來分析其特性。最終篩選出維生素B2和三乙醇胺(B2 / TEOA)的組合適用於DLP-AM。
    最後,將可光交聯的PGS-g-Arg 材料與B2 / TEOA結合使用,並通過DLP-AM 製造3D列印抗菌傷口敷料。結果證實 “60 wt% PGSA” 與 “40 wt% PGS-g-18%Arg” 和 “ 0.5 wt% B2 / TEOA光起始劑” 的組合可通過DLP-AM進行3D列印。此新組合材料可快速列印受傷的組織,同時具抗菌功能與安全性將可望應用於傷口敷料。


    In order to promote wound healing and improve the quality of treatment, this thesis aims to develop novel materials that can conform to the shape of wounds and have antimicrobial properties to increase patient tolerance and prevent wound infections. Based on these requirements, novel strategies were conducted and materials with 3D printing and antimicrobial functions were developed.
    First, L-arginine grafted poly(glycerol sebacate) materials (PGS-g-Arg) were developed by chemical conjugation of L-arginine on poly(glycerol sebacate) chains. The characteristics of mechanical property, water vapor transmission rate, antimicrobial functions, and biocompatibility of grafted materials were investigated. At various L-arginine grafting ratio, the mechanical properties are tunable. It was found that between 7–13% L-arginine grafting ratios, the tensile strengths of PGS-g-Arg were similar to that of natural skin. These materials were shown with a low water vapor transmission rate, 6.1 to 10.3 g/m2/h, which would form a barrier and assist in the closure of wounds. The grafting ratio of 7% L-arginine on PGS polymers are more than 95% efficient in antimicrobial functions, and a series of experiments were conducted to confirm its biocompatibility.
    Second, utilizing the advantage of rapid prototyping with high efficiency and high resolution, digital light processing additive manufacturing (DLP-AM) is one of the suitable methods to fabricate wound dressings that conform to the shape of wounds. However, some photoinitiators, as one of the key components in DLP-AM, may present toxicity and greatly limit the application of DLP-AM toward wound dressing. Therefore, a thorough study on the selection of photoinitiators used in DLP-AM was conducted. Four common photoinitiators were combined with photocurable materials and their characteristics were analyzed by exploring the polymerization conditions, mechanical properties, and biocompatibility. The combination of vitamin B2 and triethanolamine (B2/TEOA) shows more potential to apply in DLP-AM.
    Finally, photocrosslinkable PGS-g-Arg materials are combined with B2/TEOA for the 3D printing of antimicrobial wound dressings through DLP-AM. It is proven that the combination of "60 wt% of PGSA" mixed with "40 wt% of PGS-g-18%Arg" and "0.5 wt% of B2/TEOA photoinitiator” are 3D-printable through DLP-AM. This novel combination enables the rapid printing of wounded tissue, and is highly applicable as a nontoxic and antimicrobial wound dressing.

    摘要 I Abstract II 謝誌 IV Table of Content V List of Figures XIII List of Tables XVIII Chapter 1. Preface 1 Chapter 2. Research Background 4 2-1 Wound Dressing 4 2-1-1 Traditional Wound Dressings 5 2-1-2 Modern Wound Dressings 5 2-1-2-1 Semi-permeable Film Dressing 5 2-1-2-2 Semi-permeable Foam Dressing 6 2-1-2-3 Hydrogel Dressing 6 2-1-2-4 Hydrocolloid Dressing 6 2-1-2-5 Bioactive Wound Dressing 7 2-1-2-6 Silicone Patch Dressing 7 2-1-2-7 Composite Dressing 7 2-2 The Introduction of Additive Manufacturing 9 2-2-1 Fused Deposition Modeling (FDM) 9 2-2-2 Stereolithography (SLA) 10 2-2-3 Selective Laser Sintering (SLS) 11 2-2-4 Digital Light Processing Additive Manufacturing (DLP-AM) 11 2-3 Introduction of Materials with Antimicrobial Activity and Their Mechanism Research 12 2-3-1 Antibiotics 13 2-3-2 Silver Nanoparticles 15 2-3-3 Cationic Amino Acids 18 Chapter 3. Development of Poly (Glycerol Sebacate)-Grafted-Cationic Amino Acid Polymers with Antimicrobial Activity 21 3-1 The Introduction of Poly (Glycerol Sebacate) 21 3-2 Research Framework 25 3-3 Materials and Methods 27 3-3-1 Materials and Instruments 27 3-3-2 Fabrication of Cationic Amino Acids Grafted Poly (Glycerol Sebacate) Prepolymers 29 3-3-2-1 Synthesis and Purification of PGS-g-Cationic Amino Acid Prepolymers 29 3-3-2-2 Structural Analyses of PGS-g-Cationic Amino Acid Prepolymers 31 3-3-3 Fabrication of Cationic Amino Acids Grafted Poly (Glycerol Sebacate) Crosslinking Films 31 3-3-3-1 Synthesis of PGS-g-Cationic Amino Acid Crosslinking Films 31 3-3-3-2 Structural Analyses of PGS-g-Cationic Amino Acid Crosslinking Films 32 3-3-4 Characteristics of Cationic Amino Acid Grafted Poly (Glycerol Sebacate) Crosslinked Films 32 3-3-4-1 Mechanical Property Test 32 3-3-4-2 Swelling Ratio Test 32 3-3-4-3 Water Vapor Transmission Rate Test (WVTR) 33 3-3-4-3-1 Vial Method 33 3-3-4-3-2 Mocon Method 34 3-3-4-4 Antimicrobial Test 34 3-3-4-5 Cytocompatibility of Cationic Amino Acid Grafted Poly (Glycerol Sebacate) Crosslinked Films 35 3-3-4-5-1 Cell Culture 35 3-3-4-5-2 Agar Diffusion Test 35 3-4 Results and Discussion 37 3-4-1 Fabrication of Cationic Amino Acid grafted Poly (Glycerol Sebacate) Prepolymers 37 3-4-1-1 Synthetic Methods of PGS-g-Cationic Amino Acids 37 3-4-1-2 Purification Method of PGS-g-Cationic Amino Acids 39 3-4-1-3 1H-NMR Analyses of Poly (Glycerol Sebacate) and L-arginine Grafted Poly (Glycerol Sebacate) Prepolymers 41 3-4-2 Fabrication of Cationic Amino Acid grafted Poly (Glycerol Sebacate) Crosslinking Films 44 3-4-2-1 Fabrication of Crosslinking Films via Polycondensation 44 3-4-2-2 FT-IR Analyses of Crosslinking Films 45 3-4-3 Mechanical Property and Swelling Ratio of Crosslinking Films 46 3-4-4 Water Vapor Transmission Rate of Crosslinking Films 48 3-4-5 Antimicrobial Function of Crosslinking Films 51 3-4-6 Cytocompatibility Evaluation of Crosslinking Films 53 3-5 Summary 55 Chapter 4. The Study of Highly Biocompatible Photoinitiators for the Photocurable Polymers and Their Applications of Digital Light Processing Additive Manufacturing 56 4-1 Introduction 56 4-1-1 The Introduction of Photopolymerization Reaction 56 4-1-2 Biocompatible and Photocurable Polymers 57 4-1-2-1 Poly (ε-Caprolactone) Diacrylate Derivatives 61 4-1-2-2 Poly (Glycerol Sebacate) Acrylate 62 4-1-3 Photoinitiators 64 4-1-3-1 2, 2-Dimethoxy-2-Phenylacetophenone (DMPA) 65 4-1-3-2 Diphenyl (2, 4, 6-Trimethylbenzoyl) Phosphine Oxide (TPO) 65 4-1-3-3 2-Hydroxy-4’-(2-Hydroxyethoxy)-2-Methylpropiophenone (I2959) 66 4-1-3-4 Riboflavin (Vitamin B2) Combined with Triethanolamine (TEOA) 66 4-1-4 Photoinitiator Cytocompatibility 69 4-2 Research Framework 72 4-3 Materials and Methods 74 4-3-1 Materials and Instruments 74 4-3-2 Absorbance Spectra Analyses of Photoinitiators 76 4-3-3 Fabrication of Photocrosslinkable Prepolymers 76 4-3-3-1 Synthesis of Poly (Glycerol Sebacate) Acrylate Prepolymers (PGSA) 76 4-3-3-2 Synthesis of Poly (ε-Caprolactone) Diacrylate Prepolymers (PCLDA) 77 4-3-4 Structural Analyses of Photocurable Prepolymers 78 4-3-5 Fabrication of PGSA and PCLDA Films 78 4-3-5-1 Miscibility Test between Photoinitiators and Photocurable Prepolymers 78 4-3-5-2 UV-curing Analyses of Photoinitiators and Photocurable Prepolymers 79 4-3-6 Mechanical Property Test of Films 79 4-3-7 In vitro Biocompatibility Study 80 4-3-7-1 Cell Culture 80 4-3-7-2 Cytocompatibility Comparison of Photoinitiators 80 4-3-7-3 Cytocompatibility Test of Films 82 4-3-7-4 Cell Proliferation Test of Films 82 4-3-8 In vivo Biocompatibility Study 83 4-3-8-1 Histological Analyses of Harvested Tissues 84 4-3-8-2 Immunoassay Analyses of Harvested Tissues 84 4-3-9 Fabrication of Designed Patterns via Digital Light Processing Additive Manufacturing System (DLP-AM) 84 4-3-9-1 Printing Applicability through DLP-AM System 84 4-3-9-2 Mechanical Property Test of DLP-AM Printed Patterns 85 4-4 Results and Discussions 86 4-4-1 UV-Vis Absorbance Spectra of Photoinitiators 86 4-4-2 1H-NMR Analyses of Photocurable Prepolymers 88 4-4-3 Photopolymerization Analyses between Photoinitiators and Photocurable Prepolymers 90 4-4-3-1 Miscibility Analyses and PGSA Films Fabrication 90 4-4-3-2 Miscibility Analyses and PCLDA Films Fabrication 93 4-4-4 Mechanical Property of Films 97 4-4-5 Cytocompatibility of Photoinitiators 100 4-4-6 Cytocompatibility of Films 102 4-4-6-1 Cytocompatibility of PGSA Films 102 4-4-6-2 Cytocompatibility of PCLDA Films 104 4-4-7 Cell Proliferation of PGSA Films 105 4-4-8 In vivo Biocompatibility of PGSA Films 107 4-4-9 Application in DLP-AM Printing Method 111 4-5 Summary 114 Chapter 5. Development of Poly (Glycerol Sebacate)-grafted-(Arginine-co-Acrylate) 115 5-1 Research Framework 115 5-2 Materials and Methods 117 5-2-1 Materials and Instrument 117 5-2-2 Fabrication of Poly (Glycerol Sebacate)-grafted-(Arginine-co-Acrylate) 118 5-2-2-1 Synthesis of Poly (Glycerol Sebacate) Acrylate prepolymers modified with L-Arginine 118 5-2-2-2 Synthesis of Poly (Glycerol Sebacate)-grafted-Arginine modified with Acryloyl Chloride 119 5-2-2-3 Structural Analysis of Poly (Glycerol Sebacate)-grafted-(Arginine-co-Acrylate) 120 5-2-3 Blending of PGS-g-Arg prepolymers and PGSA prepolymers 120 5-2-4 UV-crosslinking Feasibility of Photoinitiators and Photocurable Prepolymers 120 5-2-5 Structural Analysis of Crosslinked Films 121 5-2-6 Printing Applicability through DLP-AM System 121 5-3 Results and Discussion 122 5-3-1 Fabrication and 1H-NMR Analyses of Poly (Glycerol Sebacate)-grafted-(Arginine-co-Acrylate) 122 5-3-2 UV-crosslinking Capability Analyses 124 5-3-2-1 UV-crosslinking Capability Analyses of PGS-g-(Arg-co-Acrylate) Prepolymers and Photoinitiators 124 5-3-2-2 UV-crosslinking Capability Analyses of Blended Polymers of PGS-g-Arg and PGSA Prepolymers and Photoinitiators 126 5-3-3 FT-IR Analysis of Crosslinked Films 128 5-3-4 DLP-AM Printing Feasibility Analysis of Blended Polymers 129 Chapter 6. Conclusion and Future Prospects 130 References 131 Appendix A. The Calculated Expression of Quantified Data of Morphological Grades 141 Appendix B. Published paper in Polymers 2020, 12, 1457 142 Appendix C. Histological Images of Harvested Tissue in the groups of PGS Films 143 Appendix D. Histological Images of Harvested Tissue in the groups of PGSA-0.5%B2/TEOA Films 147

    1. Availabe online: https://www.marketsandmarkets.com/Market-Reports/wound-dressings-market-123903496.html?gclid=CjwKCAiAxKv_BRBdEiwAyd40NztF0cawIpHGHe-aDreXGGl-KeU_BV1f3iV93xRDS72lhF3VJMFu8xoCIloQAvD_BwE (accessed on January, 2020).
    2. Vazquez-Muñoz, R.; Borrego, B.; Juárez-Moreno, K.; García-García, M.; Morales, J.D.M.; Bogdanchikova, N.; Huerta-Saquero, A. Toxicity of silver nanoparticles in biological systems: does the complexity of biological systems matter? Toxicology letters 2017, 276, 11-20.
    3. Sambale, F.; Wagner, S.; Stahl, F.; Khaydarov, R.; Scheper, T.; Bahnemann, D. Investigations of the toxic effect of silver nanoparticles on mammalian cell lines. Journal of Nanomaterials 2015, 2015.
    4. Debra, J.; Cheri, O. Wound healing: Technological innovations and market overview. Technology Catalysts International Corporation 1998, 2, 1-185.
    5. Kogelenberg, S.v.; Yue, Z.; Dinoro, J.N.; Baker, C.S.; Wallace, G.G. Three-dimensional printing and cell therapy for wound repair. Advances in wound care 2018, 7, 145-156.
    6. Muwaffak, Z.; Goyanes, A.; Clark, V.; Basit, A.W.; Hilton, S.T.; Gaisford, S. Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. International journal of pharmaceutics 2017, 527, 161-170.
    7. Trudel, J.; Massia, S. Assessment of the cytotoxicity of photocrosslinked dextran and hyaluronan-based hydrogels to vascular smooth muscle cells. Biomaterials 2002, 23, 3299-3307.
    8. Daunton, C.; Kothari, S.; Smith, L.; Steele, D. A history of materials and practices for wound management. Wound Practice & Research: Journal of the Australian Wound Management Association 2012, 20, 174.
    9. Martin, C.; Low, W.L.; Amin, M.C.I.M.; Radecka, I.; Raj, P.; Kenward, K. Current trends in the development of wound dressings, biomaterials and devices. Pharmaceutical patent analyst 2013, 2, 341-359.
    10. Boateng, J.S.; Matthews, K.H.; Stevens, H.N.; Eccleston, G.M. Wound healing dressings and drug delivery systems: a review. Journal of pharmaceutical sciences 2008, 97, 2892-2923.
    11. Shah, J.B. The history of wound care. The Journal of the American College of Certified Wound Specialists 2011, 3, 65-66.
    12. Dhivya, S.; Padma, V.V.; Santhini, E. Wound dressings–a review. BioMedicine 2015, 5.
    13. Bleasdale, B.; Finnegan, S.; Murray, K.; Kelly, S.; Percival, S.L. The use of silicone adhesives for scar reduction. Advances in wound care 2015, 4, 422-430.
    14. Mouës, C.; Heule, F.; Hovius, S. A review of topical negative pressure therapy in wound healing: sufficient evidence? The American Journal of Surgery 2011, 201, 544-556.
    15. Ovington, L.G. Advances in wound dressings. Clinics in dermatology 2007, 25, 33-38.
    16. Moshakis, V.; Fordyce, M.; Griffiths, J.; McKinna, J. Tegadern versus gauze dressing in breast surgery. The British journal of clinical practice 1984, 38, 149.
    17. Morgan, D. Wounds—what should a dressing formulary include. Hosp Pharmacist 2002, 9, 261-266.
    18. Ramos-e-Silva, M.; de Castro, M.C.R. New dressings, including tissue-engineered living skin. Clinics in dermatology 2002, 20, 715-723.
    19. Mian, M.; Beghe, F.; Mian, E. Collagen as a pharmacological approach in wound healing. International journal of tissue reactions 1992, 14, 1.
    20. Doillon, C.J.; Silver, F.H. Collagen-based wound dressing: Effects of hyaluronic acid and firponectin on wound healing. Biomaterials 1986, 7, 3-8.
    21. Ueno, H.; Mori, T.; Fujinaga, T. Topical formulations and wound healing applications of chitosan. Advanced drug delivery reviews 2001, 52, 105-115.
    22. Thomas, A.; Harding, K.; Moore, K. Alginates from wound dressings activate human macrophages to secrete tumour necrosis factor-α. Biomaterials 2000, 21, 1797-1802.
    23. Wong, K.V.; Hernandez, A. A review of additive manufacturing. International scholarly research notices 2012, 2012.
    24. Rengier, F.; Mehndiratta, A.; Von Tengg-Kobligk, H.; Zechmann, C.M.; Unterhinninghofen, R.; Kauczor, H.-U.; Giesel, F.L. 3D printing based on imaging data: review of medical applications. International journal of computer assisted radiology and surgery 2010, 5, 335-341.
    25. González-Henríquez, C.M.; Sarabia-Vallejos, M.A.; Rodriguez-Hernandez, J. Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications. Progress in Polymer Science 2019, 94, 57-116.
    26. Sood, A.K.; Ohdar, R.K.; Mahapatra, S.S. Parametric appraisal of mechanical property of fused deposition modelling processed parts. Materials & Design 2010, 31, 287-295.
    27. Wang, X.; Jiang, M.; Zhou, Z.; Gou, J.; Hui, D. 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering 2017, 110, 442-458.
    28. Dizon, J.R.C.; Espera Jr, A.H.; Chen, Q.; Advincula, R.C. Mechanical characterization of 3D-printed polymers. Additive Manufacturing 2018, 20, 44-67.
    29. Lee, J.-Y.; An, J.; Chua, C.K. Fundamentals and applications of 3D printing for novel materials. Applied Materials Today 2017, 7, 120-133.
    30. Kerns, J. What’s the Difference Between Stereolithography and Selective Laser Sintering? Machine Design 2015, 17.
    31. Deckard, C.; Beaman, J. Process and control issues in selective laser sintering. ASME Prod Eng Div (Publication) PED 1988, 33, 191-197.
    32. Ahn, S.H.; Montero, M.; Odell, D.; Roundy, S.; Wright, P.K. Anisotropic material properties of fused deposition modeling ABS. Rapid prototyping journal 2002.
    33. Ligon, S.C.; Liska, R.; Stampfl, J.r.; Gurr, M.; Mülhaupt, R. Polymers for 3D printing and customized additive manufacturing. Chemical reviews 2017, 117, 10212-10290.
    34. Availabe online: https://3dsourced.com/3d-printing-technologies/digital-light-processing-dlp/ (accessed on 2019).
    35. Fleming, A. Streptoeoecal Meningitis treated With Penicillin. Measurement of Baeteriostatic Power of Blood and Cerebrospinal Fluid. Lancet 1943, 434-438.
    36. Reygaert, W.C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS microbiology 2018, 4, 482.
    37. Parker, N.; Schneegurt, M.; Tu, A.T.; Forster, B.M.; Lister, P. Microbiology: OpenStax. 2018.
    38. Max, M. Antibiotics, antibiotic resistance and environment.
    39. Barkat, M.A.; Harshita, F.; Beg, S.; Pottoo, F.H.; Garg, A.; Singh, S.P.; Ahmad, F.J. Silver nanoparticles and their antimicrobial applications. Current Nanomedicine (Formerly: Recent Patents on Nanomedicine) 2018, 8, 215-224.
    40. Klasen, H. A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns 2000, 26, 131-138.
    41. Wu, D.; Fan, W.; Kishen, A.; Gutmann, J.L.; Fan, B. Evaluation of the antibacterial efficacy of silver nanoparticles against Enterococcus faecalis biofilm. Journal of endodontics 2014, 40, 285-290.
    42. Tamayo, L.; Zapata, P.; Vejar, N.; Azócar, M.; Gulppi, M.; Zhou, X.; Thompson, G.; Rabagliati, F.; Páez, M. Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes. Materials Science and Engineering: C 2014, 40, 24-31.
    43. Ahamed, M.; AlSalhi, M.S.; Siddiqui, M. Silver nanoparticle applications and human health. Clinica chimica acta 2010, 411, 1841-1848.
    44. Foldbjerg, R.; Olesen, P.; Hougaard, M.; Dang, D.A.; Hoffmann, H.J.; Autrup, H. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicology letters 2009, 190, 156-162.
    45. Franci, G.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G.; Galdiero, M. Silver nanoparticles as potential antibacterial agents. Molecules 2015, 20, 8856-8874.
    46. Giuliani, A.; Pirri, G.; Nicoletto, S. Antimicrobial peptides: an overview of a promising class of therapeutics. Open Life Sciences 2007, 2, 1-33.
    47. Bo, T.; Liu, M.; Zhong, C.; Zhang, Q.; Su, Q.-Z.; Tan, Z.-L.; Han, P.-P.; Jia, S.-R. Metabolomic analysis of antimicrobial mechanisms of ε-poly-l-lysine on Saccharomyces cerevisiae. Journal of agricultural and food chemistry 2014, 62, 4454-4465.
    48. Yeaman, M.R.; Yount, N.Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacological reviews 2003, 55, 27-55.
    49. FDA. Food Additive Permitted For Direct Addition To Food For Human Consumption. Availabe online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=172.320 (accessed on April 1).
    50. US Food and Drug Administration (FDA). Agency response letter; GRAS Notice No. GRN 000135. Availabe online: http://www.cfsan.fda.gov/~rdb/opa-g135.html. (accessed on May 28).
    51. Wang, Y.; Ameer, G.A.; Sheppard, B.J.; Langer, R. A tough biodegradable elastomer. Nature biotechnology 2002, 20, 602-606.
    52. Rai, R.; Tallawi, M.; Grigore, A.; Boccaccini, A.R. Synthesis, properties and biomedical applications of poly (glycerol sebacate)(PGS): A review. Progress in polymer science 2012, 37, 1051-1078.
    53. Hurrell, S.; Milroy, G.E.; Cameron, R.E. The degradation of polyglycolide in water and deuterium oxide. Part I: the effect of reaction rate. Polymer 2003, 44, 1421-1424.
    54. Subramanian, A.; Krishnan, U.M.; Sethuraman, S. Fabrication of uniaxially aligned 3D electrospun scaffolds for neural regeneration. Biomedical Materials 2011, 6, 025004.
    55. Zhang, D.; Kandadai, M.A.; Cech, J.; Roth, S.; Curran, S.A. Poly (L-lactide)(PLLA)/multiwalled carbon nanotube (MWCNT) composite: characterization and biocompatibility evaluation. The Journal of Physical Chemistry B 2006, 110, 12910-12915.
    56. Eshraghi, S.; Das, S. Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta biomaterialia 2010, 6, 2467-2476.
    57. Kemppainen, J.M.; Hollister, S.J. Tailoring the mechanical properties of 3D‐designed poly (glycerol sebacate) scaffolds for cartilage applications. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2010, 94, 9-18.
    58. Rai, R.; Keshavarz, T.; Roether, J.; Boccaccini, A.R.; Roy, I. Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Materials Science and Engineering: R: Reports 2011, 72, 29-47.
    59. Liang, S.-L.; Cook, W.D.; Thouas, G.A.; Chen, Q.-Z. The mechanical characteristics and in vitro biocompatibility of poly (glycerol sebacate)-Bioglass® elastomeric composites. Biomaterials 2010, 31, 8516-8529.
    60. Sant, S.; Hwang, C.M.; Lee, S.H.; Khademhosseini, A. Hybrid PGS–PCL microfibrous scaffolds with improved mechanical and biological properties. Journal of tissue engineering and regenerative medicine 2011, 5, 283-291.
    61. Ravichandran, R.; Venugopal, J.R.; Sundarrajan, S.; Mukherjee, S.; Ramakrishna, S. Poly (glycerol sebacate)/gelatin core/shell fibrous structure for regeneration of myocardial infarction. Tissue Engineering Part A 2011, 17, 1363-1373.
    62. Yu, B.; Kang, S.-Y.; Akthakul, A.; Ramadurai, N.; Pilkenton, M.; Patel, A.; Nashat, A.; Anderson, D.G.; Sakamoto, F.H.; Gilchrest, B.A. An elastic second skin. Nature materials 2016, 15, 911-918.
    63. Pérez, L.; Infante, M.R.; Pons, R.; Morán, C.; Vinardell, P.; Mitjans, M.; Pinazo, A. A synthetic alternative to natural lecithins with antimicrobial properties. Colloids and Surfaces B: Biointerfaces 2004, 35, 235-242.
    64. Morán, C.; Clapés, P.; Comelles, F.; García, T.; Pérez, L.; Vinardell, P.; Mitjans, M.; Infante, M.R. Chemical structure/property relationship in single-chain arginine surfactants. Langmuir 2001, 17, 5071-5075.
    65. ASTM, D. Standard test method for water absorption of plastics.
    66. Gilman, T.H. Silicone sheet for treatment and prevention of hypertrophic scar: a new proposal for the mechanism of efficacy. Wound Repair and Regeneration 2003, 11, 235-236.
    67. Astm, S. Standard test methods for water vapor transmission of materials-ASTM E96-95.
    68. Kawakami, H.; Yoshida, K.; Nishida, Y.; Kikuchi, Y.; Sato, Y. Antibacterial properties of metallic elements for alloying evaluated with application of JIS Z 2801: 2000. ISIJ international 2008, 48, 1299-1304.
    69. Wallin, R.F.; Arscott, E. A practical guide to ISO 10993-5: Cytotoxicity. Medical Device and Diagnostic Industry 1998, 20, 96-98.
    70. ASTM, F. 895 Standard Test Method for Agar Diffusion Cell Culture Screening Cytotoxicity. ASTM F, 895-2001.
    71. Lamke, L.O.; Nilsson, G.; Reithner, H. The evaporative water loss from burns and the water-vapour permeability of grafts and artificial membranes used in the treatment of burns. Burns 1977, 3, 159-165.
    72. Tandara, A.A.; Mustoe, T.A. The role of the epidermis in the control of scarring: evidence for mechanism of action for silicone gel. Journal of plastic, reconstructive & aesthetic surgery 2008, 61, 1219-1225.
    73. Hae Cho, C.A.; Liang, C.; Perera, J.; Liu, J.; Varnava, K.G.; Sarojini, V.; Cooney, R.P.; McGillivray, D.J.; Brimble, M.A.; Swift, S. Molecular weight and charge density effects of guanidinylated biodegradable polycarbonates on antimicrobial activity and selectivity. Biomacromolecules 2017, 19, 1389-1401.
    74. Ushimaru, K.; Hamano, Y.; Katano, H. Antimicrobial activity of ε-poly-L-lysine after forming a water-insoluble complex with an anionic surfactant. Biomacromolecules 2017, 18, 1387-1392.
    75. Żywicka, A.; Fijałkowski, K.; Junka, A.F.; Grzesiak, J.; El Fray, M. Modification of bacterial cellulose with quaternary ammonium compounds based on fatty acids and amino acids and the effect on antimicrobial activity. Biomacromolecules 2018, 19, 1528-1538.
    76. Castelletto, V.; Barnes, R.H.; Karatzas, K.-A.; Edwards-Gayle, C.J.; Greco, F.; Hamley, I.W.; Rambo, R.; Seitsonen, J.; Ruokolainen, J. Arginine-containing surfactant-like peptides: interaction with lipid membranes and antimicrobial activity. Biomacromolecules 2018, 19, 2782-2794.
    77. Borenfreund, E.; Puerner, J.A. A simple quantitative procedure using monolayer cultures for cytotoxicity assays (HTD/NR-90). Journal of tissue culture methods 1985, 9, 7-9.
    78. Ferreira, P.; Coelho, J.; Almeida, J.; Gil, M. Photocrosslinkable polymers for biomedical applications. Biomedical Engineering-Frontiers and Challenges 2011, 1, 55-74.
    79. Odian, G. Principles of polymerization; John Wiley & Sons: 2004.
    80. Williams, D.F. Progress in Biomedical Engineering: Definitions in Biomaterials; Elsevier: 1987.
    81. Shastri, V.P. Non-degradable biocompatible polymers in medicine: past, present and future. Current pharmaceutical biotechnology 2003, 4, 331-337.
    82. Iso, B.; STANDARD, B. Biological evaluation of medical devices. Part 2009, 1, 10993.
    83. Tamada, J.; Langer, R. The development of polyanhydrides for drug delivery applications. Journal of Biomaterials Science, Polymer Edition 1992, 3, 315-353.
    84. Nijst, C.L.; Bruggeman, J.P.; Karp, J.M.; Ferreira, L.; Zumbuehl, A.; Bettinger, C.J.; Langer, R. Synthesis and characterization of photocurable elastomers from poly (glycerol-co-sebacate). Biomacromolecules 2007, 8, 3067-3073.
    85. Stevens, M.P. Polymer chemistry; Oxford university press New York: 1990; Vol. 2.
    86. Allen, N.S.; Marin, M.C.; Edge, M.; Davies, D.W.; Garrett, J.; Jones, F.; Navaratnam, S.; Parsons, B.J. Photochemistry and photoinduced chemical crosslinking activity of type I & II co-reactive photoinitiators in acrylated prepolymers. Journal of Photochemistry and Photobiology A: Chemistry 1999, 126, 135-149.
    87. Mucci, V.; Vallo, C. Efficiency of 2, 2‐dimethoxy‐2‐phenylacetophenone for the photopolymerization of methacrylate monomers in thick sections. Journal of Applied Polymer Science 2012, 123, 418-425.
    88. Salgado, V.E.; Albuquerque, P.P.A.; Cavalcante, L.M.; Pfeifer, C.S.; Moraes, R.R.; Schneider, L.F.J. Influence of photoinitiator system and nanofiller size on the optical properties and cure efficiency of model composites. Dental materials 2014, 30, e264-e271.
    89. Sabnis, A.; Rahimi, M.; Chapman, C.; Nguyen, K.T. Cytocompatibility studies of an in situ photopolymerized thermoresponsive hydrogel nanoparticle system using human aortic smooth muscle cells. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2009, 91, 52-59.
    90. Kim, S.-h.; Chu, C.-C. Visible light induced dextran-methacrylate hydrogel formation using (−)-riboflavin vitamin B2 as a photoinitiator and L-arginine as a co-initiator. Fibers and Polymers 2009, 10, 14-20.
    91. Ahmad, I.; Iqbal, K.; Sheraz, M.A.; Ahmed, S.; Mirza, T.; Kazi, S.H.; Aminuddin, M. Photoinitiated polymerization of 2-hydroxyethyl methacrylate by riboflavin/triethanolamine in aqueous solution: a kinetic study. International Scholarly Research Notices 2013, 2013.
    92. Oster, G.; Bellin, J.S.; Holmström, B. Photochemistry of riboflavin. Experientia 1962, 18, 249-253.
    93. Encinas, M.; Rufs, A.; Bertolotti, S.; Previtali, C. Free radical polymerization photoinitiated by riboflavin/amines. Effect of the amine structure. Macromolecules 2001, 34, 2845-2847.
    94. Atsumi, T.; Murata, J.; Kamiyanagi, I.; Fujisawa, S.; Ueha, T. Cytotoxicity of photosensitizers camphorquinone and 9-fluorenone with visible light irradiation on a human submandibular-duct cell line in vitro. Archives of oral biology 1998, 43, 73-81.
    95. Moan, J.; Berg, K.; Kvam, E.; Western, A.; Malik, Z.; Rück, A.; Schneckenburger, H. Intracellular localization of photosensitizers. In Proceedings of Ciba Foundation Symposium 146‐Photosensitizing Compounds: Their Chemistry, Biology and Clinical Use: Photosensitizing Compounds: Their Chemistry, Biology and Clinical Use: Ciba Foundation Symposium 146; pp. 95-111.
    96. Terakado, M.; Yamazaki, M.; Tsujimoto, Y.; Kawashima, T.; Nagashima, K.; Ogawa, J.; Fujita, Y.; Sugiya, H.; Sakai, T.; Furuyama, S. Lipid peroxidation as a possible cause of benzoyl peroxide toxicity in rabbit dental pulp—a microsomal lipid peroxidation in vitro. Journal of Dental Research 1984, 63, 901-905.
    97. Bryant, S.J.; Nuttelman, C.R.; Anseth, K.S. Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. Journal of Biomaterials Science, Polymer Edition 2000, 11, 439-457.
    98. Williams, C.G.; Malik, A.N.; Kim, T.K.; Manson, P.N.; Elisseeff, J.H. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 2005, 26, 1211-1218.
    99. Chen, J.-Y.; Hwang, J.V.; Ao-Ieong, W.-S.; Lin, Y.-C.; Hsieh, Y.-K.; Cheng, Y.-L.; Wang, J. Study of physical and degradation properties of 3D-printed biodegradable, photocurable copolymers, PGSA-co-PEGDA and PGSA-co-PCLDA. Polymers 2018, 10, 1263.
    100. Lancaster, M.V.; Fields, R.D. Antibiotic and cytotoxic drug susceptibility assays using resazurin and poising agents. Google Patents: 1996.
    101. Wallin, R.F. A Practical Guide to ISO 10993-12: Sample Preparation and Reference Materials. 1998.
    102. Cheng, Y.-L.; Kao, H.-L. Study on visible-light-curable polycarprolactone and poly (ethylene glycol) diacrylate for LCD-projected maskless additive manufacturing system. In Proceedings of Light Manipulating Organic Materials and Devices II; p. 95640K.
    103. Park, H.; Choi, B.; Hu, J.; Lee, M. Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering. Acta biomaterialia 2013, 9, 4779-4786.
    104. Arakawa, C.; Ng, R.; Tan, S.; Kim, S.; Wu, B.; Lee, M. Photopolymerizable chitosan–collagen hydrogels for bone tissue engineering. Journal of tissue engineering and regenerative medicine 2017, 11, 164-174.
    105. Hamid, Z.A.; Lim, K. Evaluation of UV-crosslinked poly (ethylene glycol) diacrylate/poly (dimethylsiloxane) dimethacrylate hydrogel: properties for tissue engineering application. Procedia Chemistry 2016, 19, 410-418.
    106. Yang, W.; Yu, H.; Liang, W.; Wang, Y.; Liu, L. Rapid fabrication of hydrogel microstructures using UV-induced projection printing. Micromachines 2015, 6, 1903-1913.
    107. Fujisawa, S.; Atsumi, T.; Kadoma, Y.; Sakagami, H. Antioxidant and prooxidant action of eugenol-related compounds and their cytotoxicity. Toxicology 2002, 177, 39-54.
    108. Li, S.; Garreau, H.; Vert, M.; Petrova, T.; Manolova, N.; Rashkov, I. Hydrolytic degradation of poly (oxyethylene)–poly‐(ε‐caprolactone) multiblock copolymers. Journal of applied polymer science 1998, 68, 989-998.
    109. Huang, M.H.; Li, S.; Hutmacher, D.W.; Coudane, J.; Vert, M. Degradation characteristics of poly (ϵ‐caprolactone)‐based copolymers and blends. Journal of applied polymer science 2006, 102, 1681-1687.
    110. Kaplan, J.A.; Lei, H.; Liu, R.; Padera, R.; Colson, Y.L.; Grinstaff, M.W. Imparting superhydrophobicity to biodegradable poly (lactide-co-glycolide) electrospun meshes. Biomacromolecules 2014, 15, 2548-2554.
    111. Cao, H.; Mchugh, K.; Chew, S.Y.; Anderson, J.M. The topographical effect of electrospun nanofibrous scaffolds on the in vivo and in vitro foreign body reaction. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2010, 93, 1151-1159.
    112. Bettinger, C.J.; Bruggeman, J.P.; Borenstein, J.T.; Langer, R.S. Amino alcohol-based degradable poly (ester amide) elastomers. Biomaterials 2008, 29, 2315-2325.

    QR CODE