簡易檢索 / 詳目顯示

研究生: 張祐翔
CHANG, YU-HSIANG
論文名稱: 應用模擬最佳化於FMS之機台與車輛同步排程
Simulation based optimization approach for simultaneous scheduling of machines and AGVs in FMS
指導教授: 林則孟
口試委員: 廖崇碩
郭人介
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 131
中文關鍵詞: 彈性製造系統排程區域控制基因演算法
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    傳統上之排程問題只考慮機台資源,但是在彈性製造系統(Flexible Manufacturing System, FMS)中除了機台資源外還包含搬運系統如自動物料搬運車輛(Automatic guided vehicles, AGV),而搬運工件的時間會導致機台的閒置,因此在本研究的目標是要同步(Simultaneous)處理作業排程與車輛排程,使總完工時間(Makespan)最小化。同時考量作業排程與車輛排程是一個複雜的NP-Hard問題,因此需要一個有效的搜尋方法。根據文獻指出演化式演算法在處理最佳化排程問題是較好的選擇,因此本研究利用基因演算法(Genetic Algorithm ,GA)產生作業排程,並利用車輛排程演算法對每一個作業去選擇車輛。將兩個方法結合以處理同時排程問題。在面臨多目標問題時則使用多目標基因演算法(Multi-Objective Genetic Algorithm, MOGA)。
    在FMS當中,由於機台都為多功能機台,工件的同一作業可以選擇替代機台進行加工,這個特性更增加排程的複雜性;而替代機台會影響到總完工時間以及機台與車輛的利用率,因此除了利用機台選擇演算法使總完工時間最小化之外,機台的利用率平衡也是重要的指標。在文獻中以數學規劃求解同時排程問題,車輛搬運工件的時間都是以搬運時間除以車輛移動速度,並未考慮到車輛在途中可能因為壅塞而延遲搬運時間或是車輛鎖死(deadlock)的實際上會面臨到問題,因此本研究在FMS同步排程系統之建構以離散事件模擬來達到考量實務情況,以區域控制(zone-control)處理車輛鎖死的問題,並以模擬最佳化架構在基因演算法結合模擬模式來增快求解效率。
    FMS當中的機台都為CNC機台,作業的加工時間幾乎都是確定的,但是作業的整備時間是具有變異性的,這個因素使整個模型具有隨機性,若只以模擬一次的數據便對其下定論,可能因為隨機造成的誤差導致決策錯誤,若模擬太多次則會導致模擬時間過長。因此利用OCBA(Optimal Computing Budget Allocation)分配較多模擬資源給無法明確分辨好壞與變異太大的方案,在滿足特定的P{CS}下,能利用最少的模擬資源找出準確的方案。在面臨多目標問題時則使用MOCBA((Multi-Objective Optimal Computing Budget)。


    目錄 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究範圍 4 1.4 研究步驟與方法 4 第二章 文獻回顧 7 2.1 排程問題 7 2.2 解決排程問題的相關方法論 9 2.3 FMS同步排程(SIMULTANEOUS SCHEDULING) 11 2.4 替代機台(ALTERNATIVE MACHINE) 12 2.5 基因演算法 12 2.6 模擬最佳化方法 14 2.7 多目標最佳化問題 17 2.8 多目標基因演算法 19 第三章 彈性製造系統之機台與車輛同步排程問題 22 3.1 FMS同步排程問題 22 3.2 問題描述 23 3.3 問題定義與假設 23 3.4 方法論 25 3.4.1 基因演算法 26 3.4.2 模擬模式架構 34 3.4.3 模擬模式建構 35 第四章 單目標之確定型模擬模式與實驗 42 4.1 實驗一:使用基因演算法結合LOCAL SEARCH求解同步排程問題 42 4.1.1 基因演算法結合Local Search 43 4.1.2 基因演算法之參數分析 47 4.1.3 實驗一之模擬結果 50 4.2 實驗二:導入區域控制以避免衝撞與鎖死 54 4.2.1 避免衝撞與鎖死之方法論 55 4.2.2 實驗二之模擬結果 58 4.3 實驗三:在FMS考慮替代機台應用於同步排程 61 4.3.1 處理替代機台問題之方法論 64 4.3.2 實驗三之模擬結果 68 4.4 實驗四:考慮替代機台下再加入機台利用率平衡之限制 72 4.4.1 考慮替代機台下再加入利用率平衡之方法論 72 4.4.2 實驗四之實驗結果 73 4.5 實驗結論 79 第五章 單目標之隨機型模擬模式與實驗 81 5.1 使模型具有隨機性 81 5.1.1 考慮加工時間具有隨機性 81 5.1.1 考慮隨機性之實驗結果 83 5.2 基因演算法結合OCBA之方法論 88 5.2.1 基因演算法與OCBA之流程 90 5.2.2 OCBA之參數分析 93 5.2.3 OCBA與Equal Allocation模擬效率比較 98 5.3 實驗結論 99 第六章 雙目標之模擬模式與實驗 102 6.1 使用多目標基因演算法處理同步排程問題 102 6.1.1 Pareto Optimality 102 6.1.2 多目標基因演算法模式 (Multi-Objective Genetic Algorithm, MOGA) 104 6.1.3 多目標基因演算法之實驗結果 108 6.2 考慮加工時間具有隨機性 110 6.2.1 考慮隨機性之實驗結果 111 6.3 多目標基因演算法結合MOCBA方法論 114 6.3.1 多目標基因演算法與MOCBA之流程 116 6.3.2 MOCBA與Equal Allocation模擬效率比較 120 6.4 實驗結論 123 第七章 結論與建議 125 7.1 結論 125 7.2 建議 127 參考文獻 128

    參考文獻
    [1] 王治平,“實際零工式生產排程問題的派工法則”,政治大學資訊管理研究所碩士論文,2003。
    [2] 吳盈志,“雙演化演算法之研究”,中原大學資訊管理研究所碩士論文,2009。
    [3] 詹詩敏,“半導體封裝廠之機台配置問題”,清華大學工業工程與工程管理所碩士論文,2010。
    [4] 田孝珍,“雙目標模擬最佳化在自動化物料搬運系統之應用”,清華大學工業工程與工程管理所碩士論文,2011。
    [5] Abdelmaguid, T. F.,Nasef, A. O., Kamal, B. A. and Hassan, M. F., “A hybrid GA/Heuristic approach to the simultaneous scheduling of machines and automated guided vehicles”, International Journal of Production Research, Vol.42, No.2, 2004, pp267-281.
    [6] Anwar, M. F. and Nagi, R., “Intergrated scheduling of material handling and manufacturing activities for JIT production of complex assemblies”, International Journal of Production Research, Vol.36, No.3, 1993, pp653-681.
    [7] Babu, A. G., Jerald, J., Haq, A. N., Luxmi, V. M., Vigneswaralu, T. P., “Scheduling of machines and automated guided vehicles in FMS using differential evolution”, International Journal of Production Research, 48, 2010, pp4683-4699.
    [8] Bagchi, T. P., “Multiobjective Scheduling by Genetic Algorithms”, Kluwer Academic Publishers: Boston, 1996.
    [9] Bilge, U. and Ulusoy, G., “A time windows approach to simultaneous scheduling of machines and material handling system in an FMS”, Journal of Operations Research, Vol.43, No.6, 1995, pp1058-1070.
    [10] Chen, C. H., Lee, L. H., “Stochastic Simulation Optimization an Optimal Computing Budget Allocation”, System Engineering and Operations Research, Vol.1, 2010.
    [11] Conway, R. W., Maxwell, W. L., and Miller, L. W., Theory of Scheduling, Addison Wesley, Reading Massachusetts., USA, 1967
    [12] Deb, K., Agrawal, S., Pratap, A., Meyarivan, T., “A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II”, IEEE Trans Evol Comput, 6(2), 2002, pp182-197.
    [13] Fanti, M. P., “Event-based controller to avoid deadlock and collisions in zone-control AGVs”, International Journal of Production Research, Vol.40, No.6, 2002, pp1453-1478.
    [14] Fernández, J., Besuievsky, G., “Inverse lighting design for interior buildings integrating natural and artificial sources”, Computers & Graphics, Vol 36, No.8, 2012, pp1096-1108.
    [15] Groover, M. P., Automation, Production Systems, and Computer Integrated Manufacturing, Printed-Hall of India, New Delhi, 1996.
    [16] Hakimi-Asiabar, M., Ghodsypour, S. H., Kerachian, R., “Multi-objective genetic local search algorithm using Kohonen’s neural map”, Computers & Industrial Engineering, 56, 2009, pp1566-1576.
    [17] Han, H. M., McGinnis, L. F., “Control of material handling transporter in automated manufacturing”, IIE Transactions, 21(2), 1989, pp184-190.
    [18] Hansen, P., & Mladenivic, N., “Variable neighborhood search: Principles and application”, European Journal of Operation Research, 130, 2001, pp449-467.
    [19] Harmonosky, C. M., “Simulation-based real-time scheduling:review of recent developments”, Procedings of the 1995 Winter Simulation Conference, 1995, pp220-224.
    [20] Hart, W. E., “Adaptive Global Optimization with Local Search”, PhD Thesis, University of California, San Diego, 1994.
    [21] Ilkyeong, M., Lee, J., “Genetic Algorithm Application to the Job Shop Scheduling Problem with Alternative Routing”,BK21 Logistics Team, Industrial Engineering, Pusan National University, 2000, pp1-99.
    [22] Jerald, J., Asokan, P., Saravanan, P., Rani, D. C., “Simultaneous scheduling of parts and automated guided vehicles in an FMS environment using adaptive genetic algorithm”, International Journal Advanced Manufacturing Technology, 29, 2006, pp584-589.
    [23] Karabuk, S., and SabunChoglu, I., “A beam search based algorithm for scheduling machines and AGVs in an FMS”, Proc. Second Industrial Engg. Res. Conf, 1993, pp308-312.
    [24] Kim, K. W., Lee, D., Jeong, I.J., “Multi-objective Genetic Algorithm for Multistage-based Job Processing Schedules in FMS Environment”, IEEE International Conference on Control and Automation, 2007, pp.1705-1709.
    [25] Kumar, M. V. S., Janardhana, R., Rao, CSP., “Simultaneous scheduling of machines and vehicles in an FMS environment with alternative routing”, International Journal Advanced Manufacturing Technology, 53, 2011, pp339-351.
    [26] Lacomme, P., Moukrim, A., Tchernev, N., “Simultaneous job input sequencing and vehicle dispatching in a single-vehicle automated guide vehicle system:a heuristic branch-and-bound approach coupled with a discrete events simulation model”, International Journal of Production Research, Vol.43, No.9, pp1911-1942.
    [27] Nasr, N. and Elsayed, E. A., “Job Shop with Alternative Machines”, International Journal of Production Research, Vol.28, No.9, 1990, pp1595-1609.
    [28] Ombuki, B. M. and Ventresca, M., “Local Search genetic algorithms for the job shop scheduling problem”, Appl. Intell., Vol.21, No.1, 2004, pp99-109.
    [29] Ono, I., Yamamura, M. and Kobayashi, S., “A genetic algorithm for job-shop scheduling problems using job-based order crossover”, in:Proceedings of ICEC’96, 1996, pp547-552.
    [30] Parthasarthy, S., Rajendran, C., “A simulated annealing heuristic for scheduling to minimize weighted tardiness in a flowshop with sequence dependent setup times of jobs-a case study”, Prodouction Planning & Control, 8:5, 1997, pp475-485.
    [31] Pasupathy, T., Rajendran, C., Suresh, R. K., “A multiobjective genetic algorthim for scheduling in flow shops to minimize the makespan and total flow time of jobs”, Internet. J. Adv. Manufacturing Tech, 27, 2006, pp804-815.
    [32] Raman, N., Talbot, F. B., Rachamadugu, R. V., “Simultaneous scheduling machines and material handling devices in automated manufacturing”, Proceedings of second ORSA/TIMS Conference on Flexible Manufacturing System,1986, pp455-466.
    [33] Reddy, B. S. P. and Rao, C. S. P., “A hybrid multi-objective GA for simultaneous scheduling of machines and AGVs in FMS”, International Journal of Advanced Manufacturing Technology, 31, 2006, pp602-613.
    [34] Satishkumar, M. V., “Simultaneous scheduling of machines and Agvs using evolutionary optimization algorithms”, PhD Thesis, Jawaharlal Nehru Technological University, 2011.
    [35] Srinivas, N. and Deb, K., “Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms”, Evolutionary Computation, Vol.2, 221-248, 1994.
    [36] Stecke, K. E., “Design, planning, scheduling, and control problems of flexible manufacturing systems”, Annals of Operations Research, 3, 1985, pp.1-13.
    [37] Subbaiah, K. V., Rao, M. N. and Rao, K.N., “Scheduling of AGVs and machines in FMS with makespan criteria using sheep flock heredity algorithm”, International journal of Physical Sciences, 4, 2009, pp139-148.
    [38] Ulusoy, G., and Bilge, U., “Simultaneous Scheduling of machines and automated guided vehicles”, International Journal of Production Research, Vol.31, No.12, 1993, pp2857-2873.
    [39] Ulusoy, G., Srvnkaya, F. – Serifogulg, Umit, Bilge, “A Genetic algorithm approach to the simultaneous scheduling of machines and automated guided vehicles”, Computers & Operations Research, Vol.24, No.4, 1997, pp335-351.
    [40] Vis, I., “Survey of Research in the Design and Control of Automated Guided Vehicle Systems”, European J. of Operational Res., 170, 2006, pp677-709.
    [41] Wang, F. K. and Lin, J. T., “Performance evalution of an automated material handling system for a wafer fab”, Robotics and Computer-Integrated Manufacturing, vol. 20, 2004, pp91-100.
    [42] Wilhelm, W. and Shin, H. “Effectiveness of alternative operations in a flexible manufacturing system”, International Journal of Production Research, 23, 1985, pp65-79.
    [43] Yeh, M.S., Yeh, W.C., “Deadlock prediction and avoidance for zone-control AGVs”, International Journal of Production Research, 36(10), 1998, pp2879-2889.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE