研究生: |
朱懷遠 Huai-Yuan Chu |
---|---|
論文名稱: |
DAWN三維矽微加工製程平台及其應用 The DAWN Fabrication Platform for Three Dimensional Silicon Micromachining and Its Applications |
指導教授: |
方維倫
Weileun Fang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 180 |
中文關鍵詞: | 凸角補償結構及非{111}晶格面的濕式蝕刻屏障 、DAWN製程平台 、SOI DAWN製程平台 、多自由度單晶矽移動平台 、三維微電極陣列 、奈米碳管-高分子複合薄膜 |
外文關鍵詞: | a vertical convex corner compensation and non {111} crystal planes protection, DAWN fabrication platform, SOI DAWN fabrication platform, multi-degrees-of-freedom movable platforms, 3D multielectrode array, “CNT-polymer” composite-film |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文介紹一種整合濕式非等向性化學蝕刻和乾式的深活性離子蝕刻矽基材的製程(稱為DAWN製程),以結合此二蝕刻方式的優點,從而衍生出兩種分別於適用於(100)矽晶片及SOI 晶片的平台製程。首先,利用DAWN製程於(100)矽晶片上安置蝕刻屏障,使得凸角結構和非{111}晶格面蝕刻底切的問題得以克服。在(100)矽晶片上,DAWN製程平台可以製造及整合以下結構:(1) 任意形狀的凸塊和孔洞,(2) 懸浮結構,(3) {111}晶格面所構成的V型槽和孔穴,(4) {111}晶格面和蝕刻屏障所構成的斜面結構,和(5) 多重高度結構。此外,在SOI晶片上,SOI DAWN製程平台還可製造及整合以下結構:(1) 薄膜彈簧、肋補強薄膜彈簧及厚彈簧,(2) 同平面/出平面致動器-直線或角度的運動,和(3) 厚質量塊、階梯狀質量塊及斜面質量塊,而整合的各式微結構可形成多自由度單晶矽移動平台,徹底突破傳統SOI晶片微加工技術的限制。最後,本文利用DAWN製程概念設計並製造生醫感測器,此三維微電極陣列具備穿刺細胞、內建電訊傳導和訊號前端放大等功能,且實際記錄到紐西蘭家兔的視網膜神經訊號。而未來希望與DAWN製程平台整合的奈米碳管薄膜,可藉由高分子薄膜變成奈米碳管-高分子複合薄膜,而奈米碳管薄膜和奈米碳管-高分子複合薄膜的機械性質也成功量測得到,並實際應用在微致動器上(有靜電驅動、熱驅動及光驅動等方式)。相信此一新開發的奈米碳管-高分子複合薄膜,未來有潛力成為重要的微機電元件材料。
This study has successfully demonstrated a DRIE assisted wet anisotropic bulk micromachining (DAWN process) to fabricate various three-dimensional MEMS devices on the (100) silicon wafer and SOI wafer. This platform employs the characteristics of the DRIE process to prevent the convex corner undercut and crystal plane dependent effect during bulk etching. Moreover, these mesas and cavities with arbitrary shape can further integrate with suspended thin film structures and the structure formed by the inclined {111} crystal planes. This study has also developed various out-of-plane springs and actuators on SOI wafer using the SOI DAWN process. Further, the integration of these out-of-plane components with the existing in-plane components is also demonstrated. Thus, various multi-degrees-of-freedom (DOF) movable platforms made of single-crystal-silicon (SCS) are implemented on a SOI wafer. A novel method has been developed for the manufacture of a three dimensional multi-electrode array. The microneedle array can be employed for not only bio-neural stimulating but also in-situ signal recording, and a test on rabbit retina was also available. This study has also demonstrated the idea of concreting the aligned CNT-films using the chemical vapor deposited (CVD) polymer film, so as to form the “CNT-polymer” composite-film. The mechanical properties of the aligned CNT-film and the “CNT-polymer” composite-film are characterized. Thus the “CNT-polymer” composite-film could be a potential material for MEMS.
[1] H.K. Rockstad, J.K. Reynolds, T.K. Tang, T.W. Kenny, W.J. Kaiser, and T.B. Gabrielson, “A Miniature, High-sensitivity, Electron Tunneling Accelerometer,” Transducer‘95, Stockholm, Sweden, June, 1995, pp. 675-678.
[2] C.-H. Liu and T.W. Kenny, "A high-precision, wide-bandwidth micromachined tunneling accelerometer," Journal of Microelectromechanical Systems, 10, pp.425 - 433 , 2001.
[3] L.Y. Lin, S.S Lee, M.C Wu, and K.S.J. Pister, “Micromachined integrated optics for free-space interconnections,” MEMS’95, Amsterdam, The Netherlands, January, 1995, pp.77-82.
[4] E.E Hui, R.T. Howe, and M.S Rodgers,” Single-step assembly of complex 3-D microstructures,” MEMS’00, Miyazaki, Japan , January, 2000, pp. 602 –607.
[5] P. Helin, M. Mita, H. Fujita, “Self aligned vertical mirrors and V-grooves applied to a self-latching matrix switch for optical networks,” MEMS’00, Miyazaki, Japan, January, 2000, pp. 467-472.
[6] L.-S. Huang, S.-S. Lee, E. Motamedi, M.C. Wu, and C.-J. Kim, “MEMS packaging for micro mirror switches,” Proc. of 48th IEEE Electronic Components and Technology Conference, Seattle, WA, May, 1998, pp. 592 –597.
[7] R. Zengerle and M. Richter, “Simulation of microfluid systems,” Journal of Micromechanics and Microengineering, 4, pp 192-204, 1994.
[8] M. Esashi, “Integrated microflow control systems,” Sensors and Actuators A, 21-A23, pp. 161-167, 1990.
[9] Y. Y. Park, S. H. HaN, and M.G.Allen, “Batch-fabricated microinductors with electroplated magnetically anisotropic and laminated alloy cores,” IEEE Transactions on Magnetics, 35, pp.4291 - 4300, 1999.
[10] T. Mineta, T. Mitsui, Y. Watanabe, S. Kobayashi, Y. Haga, and M. Esashi, “ Batch fabricated flat winding shape memory alloy actuator for active catheter,” MEMS’00, Miyazaki, Japan, January, 2000, pp. 375-380.
[11] G. Brock, and F. Shelledy, “Batch-fabricated heads from an operational standpoint,” IEEE Transactions on Magnetics, 11, pp.1218 - 1220, 1975.
[12] Y. Gianchandani, and K. Najafi, “Batch fabrication and assembly of micromotor-driven mechanisms with multi-level linkages,” MEMS’92, Travemunde, Germany, February, 1992, pp. 141-146.
[13] B.-H. Jo, L.M. Van Lerberghe, K.M. Motsegood, and D.J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” Journal of Microelectromechanical Systems, 9 , pp.76 - 81, 2000.
[14] R.H.W. Pijnenburg, R. Dekker, C.C.S. Nicole, A. Aubry, and E.H.E.C.Eummelen, “Integrated micro-channel cooling in silicon,” Proceeding of the 34th European Solid-State Device Research conference, Leuven, Belgium, September, 2004, pp.129-132.
[15] W. Fang and J.A. Wickert, “Post-buckling of Micromachined Beams,” Journal of Micromechanics and Microengineering, 4, pp. 116-122, 1994.
[16] W. Fang and J. A. Wickert, " Determining mean and gradient residual stresses in thin film using micromachined cantilevers," Journal of Micromechanics and Microengineering, 6, pp.301-309, 1996.
[17] A. Gupta, J.P. Denton, H. McNally, and R. Bashir, " Novel fabrication method for surface micromachined thin single-crystal silicon cantilever beams," Journal of Microelectromechanical Systems, 12, pp.185 - 192, 2003.
[18] B. Puers, and W. Sansen, “Compensation structures for convex corner micromachining in silicon,” Sensors and Actuators A, 21-23, pp. 1036-1042, 1990.
[19] H. Sandmaier, H. L. Offereins, K. Kuhl, and W. Lang, “Corner compensation techniques in anisotropic etching of (100)-silicon using aqueous KOH,” Transducer’91, San Francisco, CA, June, 1991, pp. 24-27.
[20] R. P. van Kampen, and R. F. Wolffenbuttel, “effects of (110)-oriented corner compensation structures on membrane quality and convex corner integrity in (100)-silicon using aqueous KOH,” Journal of Micromechanics and Microengineering, 5, pp. 91–94, 1995.
[21] X. Li, M. Bao, and S. Shen, “Maskless anisotropic etching-a novel micromachining technology for multilevel microstructures,” Transducer’97, Chicago, IL, June, 1997, pp. 699-702.
[22] R. B. Bosch Gmbh, U.S. Pat. 4855017, U.S. Pat. 4784720, and Germany Pat. 4 241 045C1, 1994.
[23] K.-S. Chen, A.A. Ayon, X. Zhan, and S.M. Spearing, " Effect of process parameters on the surface morphology and mechanical performance of silicon structures after deep reactive ion etching (DRIE) ," Journal of Microelectromechanical Systems, 11, pp.264 - 275 , 2002.
[24] H. Jansen, M. de Boer, and M. Elwenspoek, “Black silicon method VI: High aspect ratio trench etching for MEMS applications,” MEMS’96, San Diego, CA, February, 1996, pp. 250-257.
[25] M. de Boer, H. Jansen, and M. Elwenspoek, “The Black Silicon Method V: A Study of The Fabricating of Movable Structures for Micro Electromechanical Systems,” Tansducers’95, Stockholm, Sweden, June, 1995, pp. 565-568.
[26] K. E. Petersen, “Silicon as a mechanical material,” Proceedings of IEEE, 70, pp. 420 -457, 1982.
[27] G. Kaminsky, “Micromachining of silicon mechanical structures,” J. Vac. Sci. Technol., B3, pp. 1015 –1024, 1985.
[28] H. Miyajima, N. Asaoka, T. Isokawa, M. Ogata, Y. Aoki, M. Imai, O. Fujimori, M. Katashiro, and K. Matsumoto, " A MEMS electromagnetic optical scanner for a commercial confocal laser scanning microscope," Journal of Microelectromechanical Systems, 12, pp.243 - 251, 2003.
[29] S. S. Lee, L. S. Huang, C. J. Kim, and M. C. Wu, “Free-space fiber-optic switches based on MEMS vertical torsion mirrors,” Journal of Lightwave Technology, 17, pp. 7 -13, 1999.
[30] H. Toshiyoshi, D. Miyauchi and, H. Fujita, “Electromagnetic torsion mirrors for self-aligned fiber-optic crossconnectors by silicon micromachining,” IEEE Journal on Selected Topics in Quantum Electronics, 5, pp. 10-17, 1999.
[31] K. A. Shaw, Z. L. Zhang and N. C. MacDonald, “SCREAM I: A Single Mask, Single-Crystal Silicon, Reactive Ion Etching Process for MicroElectroMechanical Structures,” Sensors and Actuators A, 40, pp. 63-70, 1994.
[32] T.D. Kudrle, H.P. Neves, D.C. Rodger, and N.C. MacDonald, “A Microactuated Millimeter Wave Phase Shifter,” Transducers'99, Sendai, Japan, June, 1999, pp.1276-1279.
[33] M.E. McNie, D.O. King, and M.C.L. Ward, “Micromachining in SOI,” Recent Advances in Micromachining Techniques, London, UK, November, 1997, pp. 5/1 -5/4.
[34] J.T. Nee, Hybrid Surface-/Bulk-Micromachining Processes for Scanning Micro-Optical Components, Ph.D dissertation, U.C. Burkeley, 2001.
[35] J. Hsieh, and W. Fang, “BELST Process for Improved High-aspect-ratio Silicon Micromachining and Its Applications,” Journal of Micromechanics and Microengineering, 12, pp. 574-581, 2002.
[36] J. Hsieh, C.C. Chu, J. M.-L. Tsai, and W. Fang, “Using Extended BELST Process in Fabricating Vertical Comb Actuator for Optical Applications,” IEEE/LEOS International Conference on Optical MEMS, Lugano, Switzerland, August, 2002, pp. 133-134.
[37] http://www.jahm.com/:Temperature Dependent Elastic & Thermal Properties Database.
[38] M. Madou, Fundamentals of Microfabrication, 2nd Ed., New York, NY : CRC press, 1997.
[39] H.-Y. Chu, and W. Fang, “A novel vertical convex corner compensation for wet anisotropic bulk micromachining,”MEMS’04, Maastricht, The Netherlands, January, 2004, pp. 253-256.
[40] H.-Y. Chu and W. Fang, “A Vertical Convex Corner Compensation and non {111} Crystal Planes Protection for Wet Anisotropic Bulk Micromachining Process,” Journal of Micromechanics and Microengineering, 14, pp. 806-813, 2004.
[41] H.-Y. Chu, and W. Fang, “ Bulk Micromachining Platform on (100) Silicon Using the DRIE and Wet Anisotropic Etching, ”第七屆奈米工程暨微系統技術研討會, 台北, 九十二年十一月.
[42] H.-Y. Chu and W. Fang, “Bulk Micromachining Fabrication Platform Using the Integration of DRIE and Wet Anisotropic Etching,” Microsystem Technologies, 11, pp. 141-150, 2005.
[43] H.-Y. Chu, and W. Fang, “Fabrication of 3D Microstructures and Microactuators on (100) SOI Wafer Using the DAWN Process, ”MEMS’04, Maastricht, The Netherlands, January, 2004, pp. 753-756.
[44] H.-Y. Chu, S.-W. Lee, and W. Fang,“Design and fabrication of multi-degrees-of-freedom single crystal silicon moveable platforms on SOI wafer,”Transducers’05, Seoul, Korea, June, 2005, pp. 737-740.
[45] H.-Y. Chu, T.-Y. Kuo, B. Chang, S.-W. Lu, C.-C. Chiao, and W. Fang, “Development of the three dimensional multi-electrode array for neural recording,”Transducers’05, Seoul, Korea, June, 2005, pp. 1804-1807.
[46] H.-Y. Chu, T.-C. Chang, W.-K. Hsu, and W. Fang, “Concrete the aligned CNT-films, ”Transducers’05, Seoul, Korea, June, 2005, pp. 863-866.
[47] J. Kim, D. Cho, and R.S. Muller, “Why is (111) Si a batter mechanical material for MEMS?” Transducers’01, Munich, Germany, June, 2001, pp.662-665.
[48] K. E. Beam, “Anisotropic etching of silicon,” IEEE Trans. Electron Devices, ED-25, pp. 1185-1193, 1978.
[49] O. Tabata, R. Asahi, H. Funabashi, K. Shimaoka, and S. Sugiyama, “Anisotropic etching of silicon in TMAH solutions,” Transducer’91, San Francisco, CA, June, 1991, pp. 811-814.
[50] F. Volklein and H Baltes, “A microstructure for measurement of thermal conductivity of polysilicon thin films,” Journal of Microelectromechanical System, 1, pp. 193-196, 1992.
[51] H. K. Eron, J. R. Richard, and T. A. Gregory, “Diode-based thermal RMS converter with on-chip circuirty fabricated using standard CMOS technology,” Transducers’95, Stockholm, Sweden, June, 1995, pp. 154-157.
[52] M. Kimura, K. Toshima, and H. Satoh, “Optical vibration and acceleration sensor with a silicon cantilever” ASME International Mechanical Engineering Congress and Exposition, Nashville, Tennessee, November, 1999, pp. 117-121.
[53] P Norlin, O Ohman, B Ekstrom, and L Forssen, “A chemical micro analysis system for measurement of pressure, flow rate, temperature, conductivity, UV-absorption and fluorescence,” Transducers’97, Chicago, Illinois, June, 1997, pp. 507-510.
[54] V. Gass, B. H. van der Schoot and N. F. de Rooij, “Nanofluid handling by micro-flow-sensor based on drag force measurements,” MEMS’93, Fort Lauderdale, Florida, Feburary, 1993, pp. 167-172.
[55] J. Hsieh, W.-J. Chen, and W. Fang, “Toward the Micromachined Vibrating Gyroscope Using (111) Silicon Wafer Process,” in Proc. of SPIE, San Francisco, CA, October, 2001, pp.40-48.
[56] C. Gormley, K.Yallop, W. Nevin, J. Bhardwaj, H. Asraf, P. Huggegett and S. Blackstone, “State of the art deep silicon anisotropic etching on Silicon-On-Insulator bonded Substrates for dielectric isolation and MEMS applications,” 5th International Wafer Bonding Symposium, ECS-Meeting, October, 1999, pp. 350-361.
[57] A. Rickard, M. Mcnie, “Characterisation and optimization of deep dry etching for MEMS applications,” SPIE International Conference on “Microelectronic & MEMS Technnologies”, Edinburgh, UK, May, 2001, pp.1-11.
[58] D. Cole, C. McNamara, K. Somasundram, A.Boyle, C. Devine, J. McKeever, P. McCann, and A. Nevin, “Fusion-bonded multilayered SOI for MEMS applications,” SPIE Optoelectronics, Photonics and imaging (Opto Ireland), Galway, Ireland, September, 2002.
[59] V. Milanovic, M. Last, and K.S.J. Pister, " Torsional micromirror with lateral actuators," Transducer'01, Munich, Germany, June, 2001, pp. 1298-1301.
[60] J.-L.A. Yeh, J. Hongrui, and N.C. Tien,”Integrated polysilicon and DRIE bulk silicon micromachining for an electrostatic torsional actuator,” Journal of Microelectromechanical Systems, 8, pp. 456-465, 1999.
[61] R.A. Conant, J.T. Nee, K.Y. Lau, and R.S Muller ,“Dynamic deformation of scanning mirrors,” the IEEE Optical MEMS 2000 , Kauai, Hawaii, August, 2000, pp. 49-50.
[62] E.E Hui, R.T. Howe, and M.S Rodgers,” Single-step assembly of complex 3-D microstructures,” MEMS’00, Miyazaki, Japan , January, 2000, pp. 602 –607.
[63] J. Karttunen, J. Kiihamäki, S. Franssila, ”Loading effects in deep silicon etching“, Proceedings of SPIE’s Symposium on Micromachining and Microfabrication Process Technology , Santa Clara, CA, December, 2000, pp. 90-97.
[64] R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacements,” Journal of Micromechanics and Microengineering, 6, pp. 320-329, 1996.
[65] P. Jaecklin, C. Linder, and N. F. de Rooij, “Line-addressable torsional micromirrors for light modulator arrays,” Sensors and Actuators A, 41-42, pp 324-329, 1994.
[66] J. Mohr, M. Kohl, and W. Menz, "Micro Optical Switching by Electrostatic Linear Actuator with Large Displacements," Transducers'93, Yokohama, Japan, June, 1993, pp.120-123.
[67] M. Tabib-Azar, Microactuators, 1st Ed., Norwell, MA : Kluwer Academic Publishers, 1998.
[68] J. A. Yeh, C. -Y. Hui, and N. C. Tien, “Electrostatic model for an asymmetric combdrive,” Journal of Microelectromechanical Systems, 9, pp. 126-135, 2000.
[69] W.-H. Juan and S. W. Pang, "High-Aspect-Ratio Si Vertical Micromirror Arrays for Optical Switching" Journal of Microelectromechanical Systems, 7, pp. 207-213, 1998.
[70] W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H.-P. Herzig, O. Manzardo, C.R. Marxer, K.J. Weible, R. Dandliker, and N.F. de Rooij, “Applications of SOI-based optical MEMS”, IEEE Journal of Selected Topics in Quantum Electronics, 8, pp. 148-154, 2002.
[71] N. Tirole, D. Hauden, P. Blind, M. Froelicher, and L. Gaudriot, “Three-dimentional Silicon Electrostatic Linear Microactuator,” Sensors and Actuators A, 48, pp. 145-150, 1995.
[72] J.I. Seeger, and S.B. Crary, “Stabilization of electrostatically actuated mechanical devices,” Transducers’97, Chicago, IL, June, 1997, pp. 1133-1136.
[73] H. Guckel, J. Klein, T. Christenson, K. Skrobis, M. Laudon, and E. Lovell, “Thermo-magnetic metal flexure actuators,” Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, June, 1992, pp. 73-75.
[74] J.H. Comtois, V.M. Bright, and M. Phipps, “Thermal micro-actuators for surface-micromachining processes,” SPIE Micromachining and Microfabrication Conference, Austin, TX, October, 1995, pp. 10-21.
[75] M. Fischer, M. Nagele, D. Eichner, C. Schollhorn, and R. Strobel, “Integration of surface-micromachined polysilicon mirrors and a standard CMOS process,” Sensors and Actuators A, 52, pp 140-144, 1996.
[76] P. Jaecklin, C. Linder, J. Brugger, and N. F. de Rooij, “Mechanical and optical properties of surface micromachined torsional mirrors in silicon, polysilicon and aluminum,” Sensors and Actuators A, 43, pp 269-275, 1994.
[77] Fischer, H. Graef, and W. von Munch,“Electrostatically deflectable polysilicon torsional mirrors,” Sensors and Actuators A, 44, pp 83-89, 1994.
[78] J.-M. Kim, Y.-C. Ko, D.-H. Kong, J.-M. Kim, K. B. Lee, and D.-Y. Jeon,“Fabrication of silicon optical scanner for laser display,” the IEEE Optical MEMS 2000 , Kauai, Hawaii, August, 2000, pp. 13-14.
[79] J.T. Nee, R.A. Conant, M.R. Hart, K.Y. Lau, and R.S Muller ,“Stretched-film micromirrors for improved optical flatness,” the IEEE Optical MEMS 2000 , Kauai, Hawaii, August, 2000, pp. 9-10.
[80] O. Degani, E. Socher, A. Lipson, T. Lejtner, D.J. Setter, S. Kaldor, and Y. Nemirovsky, “Pull-in study of an electrostatic torsion microactuator,” Journal of Microelectromechanical Systems, 7, pp. 373-379, 1998.
[81] J. Buhler, J. Funk, J.G. Korvink, F.-P. Steiner, P.M. Sarro, and H. Baltes, “Electrostatic aluminum micromirrors using double-pass metallization,” Journal of Microelectromechanical Systems, 7, pp. 126-135, 1997.
[82] W.-C. Chen, J. Hsieh, and W. Fang, “A Novel Single-layer Bi-directional Out-of-plane Electrothermal Microactuator,” MEMS’02, Las Vegas, NV, January, 2002, pp.693-697.
[83] W.-C. Chen, C.-C. Chu, J. Hsieh, and W. Fang, 2002, “A Novel Single-layer Bi-directional Out-of-plane Electrothermal Microactuator,” Sensors and Actuators A, 103, pp. 48-58, 2003.
[84] Q.A. Huang, and N.K.S. Lee, “Analysis and design of polysilicon thermal flexure actuator,” Journal of Micromechanics and Microengineering, 9, pp. 64-70, 1999.
[85] S.S. Rao, Mechanical Vibrations, third edition, Reading, Massachusetts : Addison-Wesley, 1995.
[86] R.J. Roark, Formulas for Stress and Strain, fourth edition, New York, NY : McGraw-Hill, 1965.
[87] S. H. DeVries, “Correlated firing in rabbit retinal ganglion cells,” Journal of Neurophysiol, 81, pp. 908-920, 1999.
[88] M. Meister, L. Lagnado, and D. A. Baylor,” Concerted signaling by retinal ganglion cells,” Science, 270, pp. 1207-1210, 1995.
[89] I. H. Brivanlou, D. K. Warland, and M. Meister, ” Mechanisms of concerted firing among retinal ganglion cells,” Neuron, 20, pp. 527-539, 1998.
[90] U. Egert, B. Schlosshauer, S. Fennrich, W. Nisch, M. Fejtl, T. Knott, T. Muller, and H. Hammerle, “A novel organotypic long-term culture of the rat hippocampus on substrate-integrated multielectrode arrays,” Brain research protocols, 2, pp. 229-242, 1998.
[91] M. O, Heuschkel, M. Fejtl, M. Raggenbass, D. Bertrand, and P. Renaud , “A three-dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices,” Journal of Neuroscience Methods, 114, pp. 135 - 148 .2002.
[92] Ayanda Biosystems, http://www.ayanda-biosys.com/.
[93] Bionic Technology, http://www.bionictech.com/.
[94] C.-C. Chiao, and R. H. Masland, “Starburst cells non-directionally facilitate the responses of direction selective retinal ganglion cells,” Journal of Neuroscience, 22, pp. 10509-10513, 2002.
[95] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, 354, pp. 56-58, 1991.
[96] D. Qian, G. J. Wagner, W. K. Liu, M.-F. Yu, and R. S. Ruoff, “Mechanics of carbon nanotubes,” Appl. Mech. Rev., 55, pp. 495-533, 2002.
[97] H.D. Espinosa, M. Fischer, E. Herbert, and W.C. Oliver, Web “www.mts.com/nano/MEMS_development.htm”.
[98] G. M. Pharr and W.C. Oliver, “Measurement of thin film mechanical properties using nanoindentation,” MRS Bulltin, 7, pp. 28-33, 1992.
[99] Parylene specifications and properties, http://www.scscookson.com/.
[100] L. Meirovitch, Analytical methods in vibration, 1st Ed., New York, NY : MacMillan, 1967.