簡易檢索 / 詳目顯示

研究生: 吳庭芳
Wu, Ting-Fang
論文名稱: 利用溶膠凝膠法製備碳修飾二氧化鈦材料及其特性鑑定
Preparation and Characterization of Carbon-Modified TiO2 Materials by Sol-Gel Method
指導教授: 董瑞安
Doong, Ruey-an
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2009
畢業學年度: 98
語文別: 英文
論文頁數: 100
中文關鍵詞: 碳修飾二氧化鈦溶膠凝膠法
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 溶膠凝膠法為製備奈米級二氧化鈦結構材料常用之方法,經由碳源的添加,在氮氣狀態下鍛燒,即可製作出碳-二氧化鈦奈米材料。部分研究發現不同實驗參數影響溶膠凝膠法製作之產物,本研究的主要目的在於探討溶膠凝膠法製備方法中幾個重要的參數,包含靜置與熟化時間,以及鍛燒溫度等對碳-二氧化鈦微結構與光催化特性的影響,研究中選用四異丙氧基鈦與三共聚高分子P123作為二氧化鈦與碳之前驅物,調控溶膠凝膠法中靜置與熟化時間在六小時到七天之間,並添加1至3克之三共聚高分子,於酸性環境下反應,並經300-900 □C的鍛燒形成碳-二氧化鈦奈米顆粒。。碳-二氧化鈦奈米顆粒在不同靜置與熟化時間條件下,其形態在鍛燒溫度700 □C下皆為銳鈦礦,提升鍛燒溫度到900 □C會產生些許金紅石相,添加3克P123作為碳源對二氧化鈦晶相轉換的抑制效果最佳。此外,碳-二氧化鈦與純二氧化鈦之奈米材料顆粒大小約為10與16 nm。溶膠凝膠法的生成產物隨著靜置或熟化時間的增加,比表面積與表面官能基也有些微的增加,但是變化並不明顯。利用X光吸收光譜儀分析碳-二氧化鈦奈米材料,發現sp2與sp3碳鍵結軌域,鈦原子EXAFS分析中也發現,碳-二氧化鈦材料隨著鍛燒溫度提升,特性波峰往較高能量移動,顯示晶相隨著時間的增加而轉換。電子順磁共振光譜儀分析光催反應下溶膠凝膠法生成之產物,發現在紫外光照射環境中,碳-二氧化鈦奈米材料表面產生三價鈦離子與帶負電之氧自由基。碳-二氧化鈦奈米材料吸附有機污染染物之能力,也遠高於二氧化鈦奈米材料。


    Content Index 中文摘要 Abstract Content Index Table Index Figure Index Chapter 1 Introduction 1-1 Motivation 1-2 ObjectivesChapter Chapter 2 Background and Theory 2-1 The sol-gel method 2-1-1 Hydrolysis 2-1-2 Condensation 2-1-3 Gelation 2-1-4 Effect of parameters 2-1-4-1 pH value 2-1-4-2 Solvent 2-2 Introduction of TiO2 particles 2-3 The TiO2 composites 2-3-1 Metals 2-3-2 Nonmetals 2-3-2-1 C-TiO2 materials 2-4 Applications Chapter 3 Materials and Methods 3-1 Experimental design 3-2 Reagents and materials 3-3 Synthesis of C-TiO2 with sol-gel method 3-4 Characterization 3-4-1 Specific surface area 3-4-2 Scanning electron microscopy (SEM) 3-4-3 Transmission electron microscopy (TEM) 3-4-4 X-ray powder diffraction (XRPD) 3-4-5 Fourier transform infrared spectroscopy (FTIR) 3-4-6 Ultraviolet-visible (UV-Vis) spectroscopy 3-4-7 Thermo-gravimetric analyzer (TGA) 3-4-8 X-ray photoelectron spectroscopy (XPS) 3-4-9 Electron paramagnetic resonance spectrometer 3-4-10 X-ray absorption spectroscopy (XAS 3-4-10-1 Analysis of XAS spectra 3-5 Determination of surface functional groups 3-6 Adsorption and photocatalytic activityexperiment Chapter 4 Results and Discussion 4-1 Morphology 4-2 Crystalline phase 4-3 Surface area 4-3-1 Reaction time 4-3-2 Various amounts 4-4 Optical properties and bandgap 4-5 Functional group 4-6 Thermal stability 4-7 Fine structures 4-8 Adsorption and photocatalytic activity 4-9 EPR studies of TiO2 and C-TiO2 nanoparticles Chapter 5 Conclusions References Appendix

    [1] Jjiang, D.; Y.; Hou, B.; Wu, D.; Sun, Y., “Synthesis of visible light-activated TiO2 photocatalyst via surface organic modification”, J. Solid State Chem., 2007, 180, 1787-1791
    [2] Kabra, K.; Chaudhary, R.; Sawhney, R. L., “Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: A review”, Ind. Eng. Chem. Res., 2004, 43, 7683-7696
    [3] Wang, Q.; jiang, Z.; Wang, Y.; Chen, D.; Yang, D., “Photocatalytic properties of porous C-doped TiO2 and Ag/C-doped TiO2 nanomaterials by eggshell membrance templating”, J. Nanopart Res., 2009, 11, 375-384
    [4] Wang, S. H.; Chen, T. K.; Rao, K. K.; Wong, M. S., “Nanoclumnar titania thin films uniquely incorporated with caron for visible light photocatalysis”, Appl. Catal. B: Environ., 2007, 76, 328-334
    [5] Zhang, L.; Liu, P.; Su, Z., “A new route for preparation of TiO2/C hybrids and their photocatalytic properities”, J. Mole. Catal. A: Chem., 2006, 248, 189-197
    [6] Ray, A. K., “Novel photocatalytic reactor for water purification”, Chem. Eng. Sci., 1999, 54, 3113-3125
    [7] Tryba, B., “Increase of the photocatalytic activity of TiO2 by carbon and iron modifications”, Inter. J. Photo., 2008, 2008, 1-15
    [8] Fujishima, A.; Rao, N.; Tryk, D. A., “Titanium dioxide photocatalysis”, J. Photochem. Photobiol. C: Photochem. Rev. 2000, 1-21
    [9] Zhang, L.W.; Fu, H.B.; Zhu, Y.F., “Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon”, Adv. Func. Mater., 2008, 18, 2180-2189
    [10] Kapoor, P.N.; Uma, S.; Rodriguez, S.; Klabunde, K.J., “Aerogel processing of MTi2O5 (M = Mg, Mn, Fe, Co, Zn, Sn) compositions using single source precursors: synthesis, characterization and photocatalytic behavior”, J. Mole. Catal. A: Chem., 2005, 299, 145-150
    [11] Wu, G.; Nishikawa, T.; Ohtani, B.;Chen, A., “Synthesis and characterization of carbon doped TiO2 nanostructures with enhanced visible response”, Chem. Mater, 2007, 19, 4530-4537
    [12] Shanmugam, S.; Gedanken A., “Carbon-coated anatase TiO2 nanocomposite as a high-performance electrocatalyst support”, Small, 2007, 7, 1189-1193
    [13] Li, M.; Zhou, S.; Zhang, Y.; Chen, G.; Hong, Z., “One-step solvothermal preparation of TiO2/C composites and their visible-light photocatalytic activities”, Appl. Surf. Sci., 2008, 254, 3762-3766
    [14] Tsumura, T.; Kojitani, N.; Izumi, I.; Iwashita, N.; Toyoda, M.; Inagaki, M., “Carbon coating of anatase-type TiO2 and photoactivity”, J. Mater. Chem. 2003, 12, 1391-1396
    [15] Janus, M.; Inagaki, M.; Tryba, B.; Toyoda, M.; Morawski, A. W., “Carbon -modified TiO2 photocatalyst by ethanol carbonization”, Appl. Catal. B, 2006, 63, 272-276
    [16] Wang, C.; Deng, Z. X.; Li, Y. D., “The synthesis of nanocrystalline anatase and rutile titania in mixed organic media”, Inorg. Chem., 2001, 40, 5210-5214
    [17] Sakthivel, S.; Kisch, H., “Daylight photocatalysis by carbon-modifiedtitanium dioxide”, Angew. Chem. int. Ed., 2003, 42, 4908-4911
    [18] Dvoranova, D.; Brezova, V.; Mazur, M.; Malati, M. A., “Investigations of metal-doped titanium dioxide photocatalysts”, Appl. Catal. B: Environ., 2002, 37, 91-105
    [19] Choi, W.Y.; Termin, A.; Hoffmann, M.R., “The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics”, J. Phys. Chem.,1994, 98, 13669-13679
    [20] Wang, H.; Lewis, J. P., “Second-generation photocatalytic materials: anion -doped TiO2”, J. Phys. : Condens. Matter., 2006, 18, 421-434
    [21] Janus, M; Morawski, A.W., “New method of improving photocatalytic activity of commercial Degussa P25 for azo dyes decomposition”, Appl. Catal. B: Environ., 2007, 75, 118-123
    [22] Fung, A. K. M.; Chiu, B. K. W., Lam, M. H. W., “Surface modification of TiO2 by a ruthenium(II) polypyridyl complex via silyl-linkage for the sensitized photocatalytic degradation of carbon tetrachloride by visible irradiation”, Water Res. 2003, 37, 1939-1947
    [23] Kim, T. K.; Lee, M. N.; Lee, S. H.; Park, Y. C.; Jung, C. K.; Boo, J. H., “Development of surface coating technology of TiO2 powder and improvement of photocatalytic activity by surface modification”, Thin Solid Film, 2005, 475, 171-177
    [24] Bessergenev, V. G.; Khmelnskii, I. V.; Pereira, R. J. F.; Krisuk, V. V.; Turgambaeva, A. E.; Igumenov, I.K., “Preparation of TiO2 films by CVD method and its electrical, structural and optical properties”, Vacuum, 2002, 3-4, 275-279
    [25] Hench, L. L.; West, J. K., “The sol-gel process”, Chem. Rev. 1990, 90, 33-72
    [26] Zhao, Y. X.; Zhao, Q., “Photocatalytic activity of nanometer TiO2 thin films prepared by the sol–gel method”, Mater. Chem. and Phys. 2001, 69, 25-29
    [27] Wu, M.; Lin, G.; Chen, D.; Wang, G.; He, D.; Feng, S.; Xu, R., “Sol-hydrothermal synthesis and hydrothermally structural evolution of nanocrystal titanium dioxide”, Chem. Mater. 2002, 14, 1974-1980
    [28] Ostwald W. Z., “The formation and changes of solids”, Phys. Chem. 1897, 22, 289-330
    [29] Park, H. K.; Kim, D. K.; Kim, C. H., “Effect of solvent on titania particle formation and morphology in thermal hydrolysis of TiCl4”, J. Am. Ceram. Soc. 1997, 80, 743-749
    [30] Nam, H. D.; Lee, B. H.; Kim, S. J.; Jung, C. H.; Lee, J. H.; Park, S. Jpn., “Preparation of ultrafine TiO2 powders from aqueous TiCl4 solution by precipitation”, J. App. Phys. 1998, 37, 4603-4608
    [31] Zhang, Q.; Gao, L.; Guo, J., “Effect of calcinations on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis”, J. App. Cat. B: Environ. 2000, 26, 207-215
    [32] Lee, S.; Yun, C. Y.; Hahn, M. S.; Lee, J.; Yi, J., “Synthesis and characterization of carbon-doped titania as a visible-light-sensitive photocatalyst”, J. Chem. Eng., 2008, 25, 892-896
    [33] Colón, G.; Hidalgo, M. C.; Macías, M.; Navío, J. A.; Doňa, J. M., “Influence of residual carbon on the photocatalytic activity of TiO2/C sample for phenol oxidation”, Appl. Catal. B: Environ., 2003, 43, 163-173
    [34] Xiao, Q.; Zhang, J.; Xiao, C.; Si, Z.; Tan, X., “Solar photocatalytic degradation of methylene blue in carbon-doped TiO2 nanoparticles suspension”, Solar Energy, 2008, 82, 706-713
    [35] Brinker, C. J.; Keefer, K.D.; Schaefer, D. W.; Ashley, C. S., “Sol-gel transition in simple silicate”, J. Non-Cryst. Solids 1982, 48, 424-436
    [36] Sakthivel S.; Kisch H., “Daylight photocatalysis by carbon-modified titanium dioxide”, Angew. Chem. Int. Ed, 2003, 42, 2908-2911
    [37] Ihara, T.; Miyohsy, M.; Ando, M.; Sugihara, S.; Iriyama, Y., “Preparation of a visible-light-active TiO2 photocatalyst by RF plasma treatment”, J. Mater. Sci. 2001, 36, 4201-4207
    [38] Livage, J.; Henry, M.; Sanchez, C. Prog., “Sol-gel chemistry of transition metal oxides”, Solid State Chem. 1988, 18, 259-341
    [39] Cushing, B.L.; Kolesnichenko, V. L.; O’Connor, C., “Recent advances in the liquid-phase syntheses of inorganic nanoparticles”, J. Chem. Rev. 2004, 104, 3893-3946
    [40] Brinker, C. J.; Scherer, G. W. “Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing”. Academic Press, Inc.: New York, 1990
    [41] Linsebigler, A. L.; Lu, G. Q.; Yates Jr, J. T., “Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results”, Chem. Rev., 1995, 95, 735-758
    [42] Diebold, U., “The surface science of titanium dioxide”, Surface Sci. Reports, 2003, 48, 53-229
    [43] Fujishima, A.; Rao, T. N.; Tryk, D. A., “Titanium dioxide photocatalysis”, J. Photochem. Photobiol. C: Photochem. Rev., 2000, 1, 1-21
    [44] Lachhe, H.; Puzenat, E.; Houas, A.; Ksibi, M. Elaloui, E. Guillard, C.; Herrmann, J. M., “Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania”, Appl. Catal. B: Environ., 2002, 39, 75-90
    [45] Matos, J.; Laine, J.; Herrmann, J. M., “Association of activated carbons of different origins with titania in the photocatalytic purification of water”, Carbon, 1999, 37, 1870-1872
    [46] Zhu, J.; Zheng, W.; He, B.; Zhang, J.; Anpo, M., “Characterization of Fe-TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water”, J. Mol. Catal. A, 2004, 216, 35-43
    [47] Zhang, J.; Ayusawa, T.; Minagawa, M.; Kinugawa, K.; Yamashita, H.; Matsuoka, M.; Anpo, M., “Investigations of TiO2 photocatalysts for the decomposition of NO in the flow system: the role of pretreatment and reaction conditions in the photocatalytic efficiency”, J. Catal., 2001, 198, 1-8
    [48] Zhang, J.; Hu, Y.; Matsuoka, M.; Yamashita, H.; Minagawa, M.; Hidaka, H.; Anpo, M., “Relationship between the local structures of titanium oxide photocatalysts and their reactivities in the decomposition of NO”, J. Phys. Chem. B., 2001, 105, 8395-8398
    [49] Park, D. R.; Zhang, J,; Ikeue, K.; Yamashita, H.; Anpo, M. L., “Photocatalytic oxidation of ethylene to CO2 and H2O on ultrafine powdered TiO2 photocatalysts in the presence of O2 and H2O”, Catal., 1999, 185, 114-119
    [50] Kisch, H.; Zang, L.; Lange, C.; Maier, W. F.; Antoniums, C.; Meissner, D., “Modified amorphous titania a hybrid semiconductor for detoxification and current generation by visible light”, Angew. Chem. Int. Ed., 1998, 37, 3034-3036
    [51] Kim, S.; Choi, W., “Visible-light-induced photocatalytic degradation of 4 -chlorophenol and phenolic compounds in aqueous suspension of pure titania: demonstrating the existence of a surface-complex-mediated path”, J. Phys. Chem. B, 2005, 109, 5143-5149
    [52] Livraghi, S.; Paganini, M. C.; Giamello, E.; Selloni, A.; Di Valentin, C.; Pacchioni, G., “Origin of photoactivity of nitrogen-doped titanium dioxide under visible light”, J. Am. Chem. Soc., 2006, 128, 15666-15671
    [53] Dvoranova, D.; Brezova, V.; Mazur, M.; Malati, M. A., “Investigations of metal-doped titanium dioxide photocatalysts”, Appl. Catal. B: Environ. 2002, 37, 91-105
    [54] Wang, C.; Bottcher, C.; Bahnemann, D.; Dohrmann, J., “In situ electron microscopy investigation of Fe(III)-doped TiO2 nanoparticles in an aqueous environment”, J. Nanoparicles Res., 2004, 6, 119-122
    [55] Cao, Y.; Yang, W.; Zhang, W.; Liu, G.; Yue, P., “Improved photocatalytic activity of Sn4+ doped TiO2 nanoparticulate films prepared by plasma-enhanced chemical vapor deposition”, New J. Chem. 2004, 28, 218-222
    [56] Chengyu, W.; Huamei, S.; Ying, T.; Tongsuo, Y.; Guowu, Z., “Properties and morphology of CdS compounded TiO2 visible light photocatalytic nanofilms coated on glass surface”, Separa. Purif. Technol., 2003, 32, 357-362
    [57] Yamashita, H.; Harada, M.; Misaka, J.; Takeuchi, M., Neppolian, B.; Anpo, M., “Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2”, Catal. Today, 2003, 84, 191-196
    [58] Kim, S.; Hwang, S. J.; Choi, W., “Visible light active platinum-ion-doped TiO2 photocatalyst”, J. Phys. Chem. B, 2005, 109, 24260-24267
    [59] Li, K.B.; Li, X. Z., “The enhancement of photodegradation efficiency using Pt–TiO2 catalyst”, Chemosphere, 2002, 48, 1103-1111
    [60] Subramanian, V.; Wolf, E.; Kamat, P. V., “Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films?”, J. Phys. Chem. B, 2001, 105, 11439-11446
    [61] Kambala, V.S.R.; Lavedrine, B.; Boule, P., “Influence of metallic species on TiO2 for the photocatalytic degradation of dyes and dye intermediates”, J. Photochem. Photobiol. A: Chem., 2003, 154, 189-193
    [62] Araňa, J.; González Diaz, O.; Miranda Saracho, M., “Maleic acid photocatalytic degradation using Fe-TiO2 catalysts. Dependence of the degradation mechanism on the Fe catalysts content”, Appl. Catal. B, 2002, 36, 113-124
    [63] Li, X.Z.; Li, F.B., “Study of Au/Au3+–TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment”, J. Enivron. Sci. Technol., 2001, 35, 2381–2387
    [64] Martin, S. T.; Morrison, C. L.; Hoffmann, M.R., “Photochemical mechanism of size-quantized vanadium-doped TiO2 particles”, J. Phys. Chem. B, 1994, 98, 13695-13704
    [65] Xiao, Q.; Zhang, J.; Xiao, C.; Si, Z.; Tan, X., “Solar photocatalytic degradation of methylene blue in carbon-doped TiO2 nanoparticles suspension”, Solar Energy, 2008, 82, 706-713
    [66] Ren, W.; Ai, Z.; Jia, F.; Zhang, L.; Fan, X.; Zou, Z., “Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2”, Appl. Catal. B: Environ., 2007, 69, 138-144
    [67] Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y., “Visible-light photocatalysis in nitrogen-doped titanium oxides”, Science, 2001, 293, 269-271
    [68] Aita, Y.; Komatsu, M.; Tin, S.; Sato, T., “Phase-compositional control and visible light photocatalytic activity of nitrogen-doped titania via solvothermal process”, J. Solid State Chem., 2004, 177, 3235-3238
    [69] Aita, Y.; Komatsu, M.; Yin, S.; Sato, T., “Phase-compositional control and visible light photocatalytic activity of nitrogen-doped titania via solvothermal process”, J. Solid State Chem., 2004, 177, 3235-3238
    [70] Diwald, O.; Thompson, T. L.; Zubkov, T.; Goralski, E. G.; Walck, S. D.; Tates, J. T. J., “The effect of nitrogen ion implantation on the photoactivity of TiO2 rutile single crystals”, J. Phys. Chem. B, 2004, 108, 52-57
    [71] Wang, H.; Lewis, J. P., “Second-generation photocatalytic materials: anion -doped TiO2”, J. Phys.: condens. Matter, 2006, 18, 421-434
    [72] Shanmugam, S.; Gabashvili, A.; Jacob, D. S.; Yu, J. C.; Gedanken, A., “Synthesis and characterization of TiO2@C core-shell composite nanoparticles and evaluation of their photocatalytic activities”, Chem. Mater., 2006, 18, 2275-2282
    [73] Jiang, D.; Xu, T.; Hou, B.; Wu, D.; Sun, T., “Synthesis of visible light-activated TiO2 photocatalyst via surface organic modification”, J. Solid State Chem., 2007, 180, 1787-1791
    [74] Liu, R.; Ren, Y.; Shi, Y.; Zhang, F.; Zhang, L.; Tu, B.; Zhao, D., “Controlled synthesis of ordered mesoporous C-TiO2 nanocomposites with crystalline titania frameworks from organic-inorganic-amphiphilic coassembly”, Chem. Mater., 2008, 20, 1140-1146
    [75] Li, S. X.; Zheng, F. Y.; Cai, W. L.; Han, A. Q.; Xie, Y. K., “Surface modification of nanometer size TiO2 with salicylic acid for photocatalytic degradation of 4-nitrophenol”, J. Hazard. Mater., 2006, B135, 431-436
    [76] Kim, T. W.; Lee, M. J.; Shim, W. G.; Lee, J. W.; Kim, T. Y.; Lee, D. H.; Moon, H., “Adsorption and photocatalytic decomposition of organic molecules on carbon-coated TiO2”, J. Mate. Sci., 2008, 43, 6486-6494
    [77] Lee, S.; Yun, C. Y.; Hahn, M. S.; Lee, J.; Yi, J., “Synthesis and characterization of carbon-doped titania as a visible-light-sensitive photocatalyst”, J. Chem. Eng., 2008, 25, 892-896
    [78] Tsumura, T.; Kojitani, N.; Izumi, I.; Iwashita, N., Toyoda, M.; Inagaki, M., “Carbon coating of anatase-type TiO2 and photoactivity”, J. Mater. Chem., 2002, 12, 1391-1396
    [79] Morawski, A. W.; Janus, M.; Tryba, B.; Inagaki, M.; Kalucki, K., “TiO2-anatase modified by carbon as the photocatalyst under visible light”, C. R. Chimie, 2006, 9, 800-805
    [80] Janus, M.; Inagaki, M.; Tryba, B.; Toyoda, M.; Morawski, A. W., “Carbon -modified TiO2 photocatalyst by ethanol carbonization”, Appl. Catal. B: Environ., 2006, 63, 272-276
    [81] Inagaki, M.; hirose, Y.; Matsunaga, T.; Tsumura, T.; Toyoda, M., “Carbon coating of anatase-type TiO2 through their precipitation in PVA aqueous solution”, Carbon, 2003, 41, 2619-2624
    [82] Zhang, L. W.; Fu, H. B.; Zhu, T. F., “Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon”, Adv. Funct. Mater., 2008. 18, 2180-2189
    [83] Tryba, B.; Morawski, A. W.; Inagaki, M., “Application of TiO2-mounted activated carbon to the removal of phenol from water”, Appl. Catal. B: Envir., 2003, 41, 427-433
    [84] Colón, G.; Hidalgo, M. C.; Macías, M.; Navío, J. A.; Doňa, J. M., “Influence of residual carbon on the photocatalytic activity of TiO2/C sample for phenol oxidation”, Appl. Catal. B: Environ., 2003, 43, 163-173
    [85] Huang, Y.; Ho, W.; Lee, S.; Zhang, L.; Li, G.; Yu, J. C., “Effect of carbon doping on the mesoporous structure of nanocrystalline titanium dioxide and its solar-light-driven photocatalytic degradation of NO”, Langmuir, 2008, 24, 3510-3516
    [86] Xu, C.; Killmeyer, R.; Gray, M. L.; Khan, S. U. M., “Photocatalytic effect of carbon-modified n-TiO2 nanoparticles under visible light illumination”, Appl. Catal. B: Environ., 2006, 64, 312-317
    [87] Sakthivel, S.; Kisch, H., “Daylight photocatalysis by carbon-modified titanium dioxide”, Angew. Chem. Int. Ed., 2003, 42, 4908-4911
    [88] Janus, M.; Tryba, B.; Inagaki, M.; Morawski, A.W., “New preparation of a carbon-TiO2 photocatalyst by carbonization of n-hexane deposited on TiO2”, Appl. Catal. B: Environ., 2004, 52, 61-67
    [89] Nakayama, N.; Hayashi, T., “Preparation of TiO2 nanoparticles surface -modified by both carboxylic acid and amine: dispersibility and stabilization in organic solvents”, Coll. and Sur. A: Physicochem. Eng. Aspects, 2008, 317, 543-550
    [90] Inagaki, M.; Kojin, F.; Tryba, B.; Toyoda, M., “Carbon-coated anatase: the role of the carbon layer for photocatalytic performance”, Carbon, 2005, 43, 1652-1659
    [91] Li, G.; Li, L.; Boerio, J.; Woodfield, B. F., “High purity Anatase TiO2 nanocrystals: near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry”, J. Am. Chem. Soc., 2005, 127, 8659-8666
    [92] Ray, S. C.; Tsai, H. M.; Chiou, J .W.; Bose, B.; Jan, J. C.; Kumar, K.; Pong, W. F.; Dasgupta, D.; Tsai, M-H., “X-ray absorption spectroscopy (XAS) study of dip deposited a-C:H(OH) thin films”, J. Phys.: Condens. Matter, 2004, 16, 5713-5719
    [93] Larciprete, R.; Lizzit, S.; Botti, S.; Cepek, C.; Goldoni, A., “Structural reorganization of carbon nanoparticles into single-wall nanotubes”, Phys. Rev., 2002, 66, 121402-1-121402-4
    [94] Choi, H. C.; Jung, T. M.; Kim, S. B., “Size effects in the Raman spectra of TiO2 nanopartilces”, Vibra. Spect., 2005, 37, 33-38
    [95] Boehm, H. P., “Some aspects of the surface chemistry of carbon blacks and other carbons”, Carbon, 1994, 32, 759-769
    [96] Alonso, F.; Gago, R.; Jiménez, I.; Gŏmez-Aleixndre, C.; Kreissig, U.; Albella, J. M., “On the bonding structure of hydrogenated carbon nitrides grown by electron cyclotron resonance chemical vapour deposition: towards the synthesis of non-graphitic carbon nitrides”, Diam. Relat. Mater., 2002, 11, 1161-1165
    [97] Kikuma, J.; Tonner, B. P., “XANES spectra of a variety of widely used organic polymers at the C K-edge”, J. Electron Spectrosc. Relat. Phenom., 1996, 82, 53-60
    [98] Nakaoka, Y.; Nosaka, Y.,”ESR investigation into the effects of heat treatment and crystal structure on radicals produced over irradiated TiO2 powder”, J. Photochem. and Photobil. A: Chem., 1997, 110, 299-305
    [99] Kim, T. K.; Lee, M. N.; Lee, S.H.; Park, T. C.; Jung, C. K.; Boo, J.-H., ”Development of surface coating technology of TiO2 powder and improvement of photocatalytic activity by surface modification”, Thin Solid Films, 2005, 475, 171-177
    [100] Attwood, A. L.; Murphy, D. M.; Edwards, J. L.; Egerton, T. A.; Harrison, R.W., “An EPR study of thermally and photochemically generated oxygen radicals on hydrated and dehydrated titania surfaces ”, Res. Chem. Intermed., 2003, 17, 499-465
    [101] Valentin, C. D.; Pacchioni, G.; Selloni, A., “Theory of carbon doping of titanium dioxide”, Chem. Mater., 2006, 17, 6656-6665
    [102] Reyes-Garcia, E. A.; Sun, T.; Reyes-Gil, K. R.; Raftery, D., “Solid-state NMR and EPR analysis of carbon-doped titanium dioxide photocatalysts (TiO2-xCx)”, Solid State Nuclear Mag. Reson. ,2009, 35, 74-81
    [103] Luca, V.; Djajanti, S.; Howe, R.F., “Structural and electronic properties of sol-gel titanium oxides studied by X-ray absorption spectroscopy”, J. Phys. Chem. B, 1998, 102, 10650-10657
    [104] Parlebas, J. C.; Khan, M. A.; Uozumi, T.; Okada, K.; Kotani, J., “Theory of many-body effects in valence, core-level and isochromat spectroscopies along the 3d transition metal seriesof oxides”, J. Electron Spectrosc. Relat. Phenom., 1995, 71, 117-139

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE