簡易檢索 / 詳目顯示

研究生: 鄭雅勻
論文名稱: 利用限制規劃求解客服中心人員排班問題
Solving the Call Center Agent Shift Scheduling Problem by Constraint Programming
指導教授: 洪一峯
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 73
中文關鍵詞: 限制規劃線性規劃客服中心客服人員排班問題
外文關鍵詞: constraint programming, linear program, call center, call center agent scheduling
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 客服中心具有大幅度需求波動的特性。然而,由於人力成本的考量,以及政府法規與公司規定的限制條件下,要提供100%的服務水準來符合隨時間改變的需求是不具經濟效益的。本研究主要探討的是二十四小時客服中心人員排班問題,假設各客服人員效率相同且允許各人員擁有多重技能,並給定各班別類型、各時間區段人數需求、以前各人員排班資料等已知條件下,配合各項政府法規、公司內部規定與員工個人休假安排等限制條件,建構出一個客服人員排班問題的求解方法。
    本研究的客服人員排班問題求解方法共分為兩個模組,第一個模組主要以限制規劃的方式將客服中心人員排班問題的模型建構出來,再以限制規劃特有的求解技術,一致性技術、搜尋演算法與限制繁衍機制等來搜尋所有的可行解。在第二個模組中,我們將人員排班階段求解出的班表結果,利用線性規劃的數學模式,分配人員到各時間區段中不同的技能需求。而此線性規劃數學模式中的目標是最小化技能需求的人力不足成本。
    為了驗證本研究所提出的方法,我們將利用限制規劃軟體ILOG Solver去執行第一階段的運算,再利用線性規劃軟體ILOG CPLEX執行出線性規劃問題的結果。
    最後,由實驗結果得知,本研究所提出之方法可以求解出人員短缺成本最低之最佳排班班表。但是當問題範圍增大時,限制規劃求解的困難度也隨之增加。因此,期望這項問題可以作為未來研究限制規劃求解人員排班問題的一個改進方向。


    We can observe that the demand of a call center fluctuates greatly. However, it is uneconomical to provide a 100% service level for time-varying demands like a call center because of the cost consideration and the government regulations and company policy. In this study, we investigate the agent shift scheduling problem for a 24-hours call center. We assume that the efficiency is the same for each employee and every employee can be qualified for multiple skills. Given the shift types, the demand of each time period and previous agent shift schedules, we try to find a better method to solve the agent shift scheduling problem in call center. The method must consider the government regulations, company policy and advanced vacation arrangements by agents.
    We use two modules to solve the call center agent scheduling problem. The first module use constraint programming to model the agent shift assignment problem. By using the concepts of constraint programming such as consistency checking techniques, searching algorithm and constraint propagation, we are able to find all feasible assignments. In the second module, we use linear program formulation to allocate agents to various skill demands for each time period. The objective of the linear program is to minimize the shortage cost of skill demands.
    To validate the proposed method, we will use ILOG Solver, a constraint programming software, to perform the calculation of the first module; also, we will use ILOG CPLEX to perform the computation of the linear program problem.
    After validating the modules, we are able to find the optimal schedule for small size problem. But, when the problem scale is getting larger, the number of feasible solutions provided by constraint programming is also getting too huge and it very difficult to solve the whole problem with a reasonable computation. Hence, it may be a good direction for further research.

    第一章 緒論................................1 1.1研究背景................................1 1.2研究動機................................2 1.3研究目的與範圍..........................3 1.4研究方法與流程..........................3 第二章 文獻回顧............................8 2.1限制規劃文獻回顧........................8 2.1.1限制規劃簡介..........................8 2.1.2限制滿足問題..........................9 2.1.3限制規劃基本架構......................10 2.2限制規劃之求解演算法介紹................11 2.2.1一致性檢驗技術........................11 2.2.2系統化搜尋演算法......................15 2.2.3限制繁衍機制..........................18 2.3限制規劃的優點..........................22 2.4人員排班文獻回顧........................23 2.4.1一般人員排班問題回顧..................23 2.4.2客服中心人員排班問題回顧..............24 第三章 方法構建............................26 3.1問題描述與定義..........................26 3.2問題的模型架構..........................28 3.3人員排班階段的模式建構..................29 3.4技能分配階段的模式......................33 3.4.1客服人員技能分配之線性規劃模式建構....33 3.4.2舉例說明..............................35 第四章 實驗結果與探討......................41 4.1實驗問題設定與實驗環境說明..............41 4.1.1實驗問題設定..........................41 4.1.2實驗環境說明..........................42 4.2實驗問題求解與探討......................42 4.2.1問題一................................42 4.2.2問題二................................53 4.2.3實驗結論探討..........................66 第五章 結論與未來展望......................68 參考文獻...................................69

    林詩芹 (2003),「以限制規劃構建全年無休服務人員排班模式 ─ 以客服人員排班為例」,國立交通大學運輸科技與管理學系碩士論文。
    李明德、曾俊欽 (2003),「科技客服,客服中心的系統建置」,培生教育出版集團。
    曾世忠 (2003),「效率客服,客服中心的程序規劃」,培生教育出版集團。
    Atlason, J. and Epelman, M. A and Henderson, S. G (2004), “Call Center Staffing with Simulation and Cutting Plane Methods”, Annals of Operations Research, Vol. 127, pp.333-358.
    Aykin , T. (1996), “Optimal Shift Scheduling with Multiple Break Windows”, Management Science, Vol. 42, No.4, pp. 591-602.
    Aykin , T. (1998), “A Composite Branch and Cut Algorithm for Optimal Shift Scheduling with Multiple Breaks and Break Windows”, The journal of the Operational Research Society, Vol. 49, No.6, pp. 603-615.
    Bailey, J. (1985), “Integrated Days off and Shift Personnel Scheduling”, Computers & Industrial Engineering, Vol. 9, No.4, pp. 395-404.
    Barboza, A. O. and Carnieri, C. and Steiner, M. T. A. and Siqueira, P. H. (2003), “OPERATIONS RESEARCH TECHNIQUES IN THE CALL CENTER SCHEDULE PROBLEM”, Gestao and producao, Vol. 10, No. 1, pp. 109-127.
    Beasley , J.E. and Cao, B. (1996), “A tree search algorithm for the crew scheduling problem”, European Journal of Operational Research, Vol. 94, pp. 517-526.
    Bhulai, S. and Koole ,G. and Pot, G. (2005), “Simple methods for shift scheduling in multi-skill call centers”, Technical report, Technical Report WS 2005-10, Free University, Amsterdam.
    Brailsford, S. C. and Potts, C. N. and Smith, B. M. (1999), “Constraint Satisfaction Problems:Algorithms and Applications,” European Journal of Operational Research, Vol. 119, No. 3, pp. 557-581.
    Buffa, E. S and Cosgrove, M. J. and Luce, B. J. (1976), “An Integrated Work Shift Scheduling System”,Decision Sci, vol. 7,pp. 620–630.
    Cai , X. and Li, K.N. (2000), “A genetic algorithm for scheduling staff of mixed skills under multi-criteria”, European Journal of Operational Research, Vol.125, pp.359-369.
    Causmaecker , P. D. and Demeester, P. and Berghe, G. V. and Verbeke, B. (2004), “Analysis of real-world personnel scheduling problems”, Proceedings of the 5th International Conference on Practice and Theory of Automated Timetabling, Pittsburgh, pp.183-197.
    Colmerauer, A. (1990), “An introduction to PROLOG III”, Communications of the ACM, Vol. 33, No. 7, pp. 70-90.
    Dantzig, G. B. (1954), “A Comment on Edie’s Traffic Delays at Toll Booths”, Operation Research, Vol.2 , pp.339-341.
    Darmoni, S. J. and Fajner, A. and Mahé, N. and Vondracek, M. and Stelian, O. and Baldenweck, M. (1995), “Horoplan: computer-assisted nurse scheduling using constraint-based programming”, Journal of the Society for Health Systems, Vol. 5, No. 1, pp. 41-54.
    Eitzen , G. and Panton, D. (2004), “Multi-Skilled Workforce Optimisation”, Annals of Operations Research, Vol.127, pp.359–372.
    Haralick, R., Elliott, G. (1980), “Increasing tree search efficiency for constraint satisfaction problems”, Artificial Intelligence, Vol. 14, pp. 263-313.
    Henderson, W. B. and Berry, W. L. (1976), “Heuristic Methods for Telephone Operator Shift Scheduling: An Experimental Analysis”, Management Science, Vol. 22, No. 12, pp. 1372-1380.
    Heskett, J.L. and Sasser, W. E. and Hart, C. W. L. (1990), Service Breakthroughs: Changing the Rules of the Game, The Free Press, New York.
    ILOG 1999, ILOG Solver 4.4 Users Manual, ILOG, Gentilly, France.
    Jaffar, J. and Lassez, J. L. (1987), Constraint logic programming, Conference Record of the Fourteenth Annual ACM Symposium on Principles of Programming Languages, Munich, Germany, pp. 111-119.
    Keith, E. G. (1979), “Operator scheduling”, AIIE Transactions, Vol. 11, No. 1, pp.37–41.
    Lauriere, J. L. (1978), “A language and a program for stating and solving combinatorial problems”, Artificial Intelligence, Vol. 10, No. 1, pp. 29-127.
    Lustig, I. J. and Puget, J. F. (2001), “Program Does Not Equal Program:Constraint Programming and Its Relationship to Mathematical Programming” Interfaces, Vol. 31, No. 6, pp. 29-53.
    Mackworth, A.K. (1977), “Consistency in networks of relations”, Artificial Intelligence, Vol. 8, pp. 99-118.
    Marriott K. and Stuckey P. J. (1998), Programming with Constraints-An Introduction, 2nd edition, The MIT Press, Cambridge, Massachusetts, London, England.
    Mcginnis, L. F. and Culver, W. D. and Deane R. H. (1977), “ONE- AND TWO-PHASE WORKFORCE SCHEDULING”, Computer and Industry Engineering, Vol. 2, pp. 7-15.
    Mehrotra, A. and Murphy, K. E. and Trick, M. A. (2000), “Optimal Shift Scheduling: A Branch-and-Price Approach”, Naval Research Logistics, Vol. 47, No.3, pp. 185-200.
    Montanari, U. (1974), “Networks of constraints: fundamental properties and applications to picture processing”, Information Science, Vol. 7, pp. 95-132.
    Morris, J. G. and Showalter, M. J. (1983), “Simple Approaches to Shift, Days-Off and Tour Scheduling Problems”, Management Science, Vol. 29, No. 8, pp. 942-950.
    Puget, J. F. (1992), Pecos: A high level constraint programming language, Proceedings of the Singapore International Conference on Intelligent Systems (SPICIS), Singapore, pp. 137-142.
    Roman Barták (1998), http://ktiml.mff.cuni.cz/~bartak/constraints/
    Sabin, D., Freuder, E.C. (1994), Contradicting conventional wisdom in constraint satisfaction, Proceedings of European Conference on Artificial Intelligence (ECAI-94), Wiley, Chichester, UK, pp. 125-129.
    Segal, M. (1974), “The Operator-Scheduling Problem: A Network-Flow Approach”, Operations Research, Vol. 22, No. 4, pp.808-823.
    Simonis, H. (1996), A problem classification scheme for finite-domain constraint solving, Proc. Workshop on Constraint Applications (CP '96), COSYTEC SA, Orsay, France.
    Siskind, J. M. and McAllester, D. A. (1993), Nondeterministic Lisp as a substrait for constraint logic programming,” Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-93), pp. 133-138.
    Thompson, G. M. (1997) “Assigning Telephone Operators to Shifts at New Brunswick Telephone Company”, Interface, Vol. 27, No. 4, pp. 1-11.
    Thompson, G. M. (1997) “Labor Staffing and Scheduling Models for Controlling Service Levels”, Naval Research Logistics, Vol. 44, pp. 719-740.
    Topaloglu, S. and Ozkarahan, I. (2002), “Implicit optimal tour scheduling with flexible break assignments”, Computers and Industrial Engineering, Vol.44, pp. 75-89.
    Van Hentenryck, P. (1989), Constraint Satisfaction in Logic Programming, MIT Press, Cambridge, Massachusetts.
    Van Hentenryck, P. (1997), “Constraint Programming for Combinatorial Search Problems”, Constraints, Vol. 2, No. 1, pp. 99-101.
    Van Hentenryck, P. (1999), The OPL Optimization Programming Language, MIT Press, Cambridge, Massachusetts.
    Waltz, D. (1972), “Generating semantic descriptions from drawings of scenes with shadows”, Technical Report AI271, MIT, Cambridge, MA.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE