簡易檢索 / 詳目顯示

研究生: 盧孟珮
Lu, Meng Pei
論文名稱: 具接面結構碲化鉍系化合物之熱電特性量測與模擬分析
Thermoelectric characterization and modeling of junction structured bismuth telluride based compounds
指導教授: 廖建能
Liao, Chien Neng
口試委員: 劉嘉吉
朱旭山
簡恆傑
吳欣潔
饒達仁
廖建能
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 153
中文關鍵詞: 熱電材料碲化鉍系化合物熱電模組接面結構材料摻雜
外文關鍵詞: thermoelectric material, bismuth telluride based compounds, thermoelectric module, junction structured material, Doping
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱電材料因其能夠直接互相轉換熱能與電能的特性,而被使用於商業化的致冷與發電元件。碲化鉍系列化合物在室溫區段下擁有極佳的熱電轉換效率,於低溫廢熱回收之相關應用範疇具有發展潛力。本實驗以碲化鉍系化合物製備出一種新型的結構,包含兩個不同西貝克係數(Seebeck coefficient)的材料區域,並探討其熱電性質。本論文將系統化的分析與討論下述主題:區域間個別的熱電材料性質、接面結構與接合製程、隨空間變化的電壓效應以及該新型材料的模組之熱電轉換效率。實驗結果之內容分為兩部分,第一部分包含本徵n型碲硒化鉍的基本性質及摻雜性質;第二部分則闡述兩區域之接面試片的特殊性質與對應模組之熱電轉換效應。 首先,實驗初期提出了一個兩階段的退火製程以優化n型碲硒化鉍之冷壓試片的熱電性質,並得到提升30 %的熱電優值。其次,針對銀與銅摻雜效應對於n型碲硒化鉍熱電特性的影響也提出了完整的晶格缺陷機制解釋。銀的摻雜二元特性是由兩種銀雜質缺陷:空隙缺陷(Agi●)與置換缺陷(AgBi’’),彼此消長所貢獻的。以第一部分本徵與摻雜之n型碲硒化鉍的熱電性質研究為基礎,進一步發展出接合兩個不同西貝克係數材料區域的概念。以本實驗的摻雜與壓錠製程可輕易製備出三種接合試片,包含P+/P、N-/N以及P/N個別兩種區域。比對實驗量測與理論模擬能夠有效預測該種新型結構固有的橫向電壓效應,並得到彼此吻合的結果。最後,本實驗針對接合熱電材料而提出新的模組結構設計,其在特定尺寸下擁有比傳統Π型模組更佳的轉換效果。針對較薄的熱電模組,新型模組的特殊電極導熱配置引入了二維的溫度梯度,能夠使輸出電壓有效提升。額外引入模組上的橫向溫差,能夠有效彌補薄型模組垂直溫差難以建立的不足,以提升薄型模組熱電轉換效率。


    Thermoelectric materials that enable direct conversion between heat and electricity have been employed in commercial devices for refrigeration and power generation. Bismuth telluride based compounds possess superior thermoelectric efficiency in room temperature regime, showing promising applicability to low temperature waste heat recovery. A novel structure of bismuth telluride based thermoelectric material that contains two regions with different Seebeck coefficients were fabricated and studied. A systematic study including individual thermoelectric transport properties, fabrication of junction structures, spatial voltage effects and thermoelectric power efficiency of corresponding modules has been performed. The study is organized as two parts: the first part contains the basic properties and doping effects of n-type Bi-Te(Se) compounds, and the second part elaborates the thermoelectric effects of junction structured materials and modules. Firstly, a two-step annealing process is proposed to optimize the thermoelectric transport properties on cold-pressed Bi2Se0.21Te2.79 bulk, showing 30 % enhancement in figure of merit. Secondly, in addition to intrinsic Bi-Te(Se) compounds, the effects of doping silver/copper on thermoelectric transport properties are elaborated by the lattice defect mechanisms. The dual electronic nature of silver-related lattice defects is carefully identified with the formation of interstitial (Agi●) and substitutional (AgBi’’) defects. The investigations of intrinsic base and extrinsic doping regions develop the concept of junction structured material with different Seebeck coefficients of two regions. There are three kinds of junction structured materials, including bulks with P+/P, N-/N, and P/N regions, which can be easily fabricated with and without dopants. Thirdly, the transverse voltage effects that are inherent in the novel structure have been well studied with good agreements between experimental and theoretically modeled results. Finally, the novel thermoelectric generation module that is assembled by junction structured materials shows better efficiency than the traditional Π-shape modules under certain dimensional criteria. The special arrangement of electrodes introduces a two-dimensional temperature gradient resulting in a larger voltage output during power generation, especially for thin thermoelectric modules. Introducing a horizontal temperature gradient to complement the insufficient vertical temperature gradient is expected to be the solution of improving the power efficiency of thin junction structured thermoelectric modules.

    摘要 ............................................................................................................................... II 誌謝 .............................................................................................................................. III Contents .......................................................................................................................IV List of figures ............................................................................................................. VII List of tables .................................................................................................................XI Chapter 1. Introduction .................................................................................................. 1 1-1. Thermoelectric effects .................................................................................... 1 1-1-1. Seebeck effect...................................................................................... 1 1-1-2. Peltier effect ........................................................................................ 2 1-1-3. Thomson effect .................................................................................... 3 1-1-4. Thomson relations ............................................................................... 3 1-2. Application of thermoelectrics ........................................................................ 4 1-2-1. Thermoelectric figure of merit ............................................................ 4 1-2-2. Thermoelectric generation ................................................................... 5 1-2-3. Thermoelectric refrigeration................................................................ 6 1-3. Transport theory of thermoelectrics ................................................................ 8 1-3-1. Boltzmann equation ............................................................................. 8 1-3-2. Seebeck coefficient.............................................................................. 9 1-3-3. Electrical conductivity ....................................................................... 10 1-3-4. Electronic thermal conductivity ........................................................ 10 1-3-5. Lattice thermal conductivity .............................................................. 11 1-4. Band model of thermoelectrics ..................................................................... 13 1-4-1. Thermoelectric quality factor ............................................................ 13 1-4-2. Quantum confinement ....................................................................... 15 Chapter 2. Literature review ........................................................................................ 17 2-1. Strategies for improving figure of merit ....................................................... 17 2-1-1. Enhancement of Seebeck coefficient ................................................ 17 2-1-2. Reduction of lattice thermal conductivity ......................................... 20 2-1-3. Other strategies .................................................................................. 23 2-2. Bismuth telluride based compounds ............................................................. 27 2-2-1. Crystal and electronic structures ....................................................... 27 2-2-2. Lattice point defects .......................................................................... 30 2-2-3. Effective dopants ............................................................................... 32 2-3. Other types of thermoelectrics ...................................................................... 35 2-3-1. Transverse effects and the applications ............................................. 35 2-3-2. Thermoelectrics with PN junction ..................................................... 38 V 2-3-3. Joined PN thermoelectric modules .................................................... 39 Chapter 3. Experimental design ................................................................................... 41 3-1. Experimental flows ....................................................................................... 41 3-1-1. Preparation of Bi-Te(Se) bulk ........................................................... 41 3-1-2. Thermal annealing processes ............................................................. 42 3-1-3. Silver doping procedures ................................................................... 42 3-1-4. Preparation of junction structured bulk ............................................. 42 3-2. Characterization of thermoelectric materials ................................................ 45 3-2-1. Microstructure and Composition ....................................................... 45 3-2-2. Thermoelectric transport properties .................................................. 45 3-2-3. Scanning probe methods ................................................................... 48 3-2-4. Transverse voltage performance ........................................................ 49 3-3. Characterization of thermoelectric modules ................................................. 50 3-3-1. Output voltage and current ................................................................ 50 3-3-2. Module inner resistance .................................................................... 50 3-4. Simulation of electric potential and temperature distribution ...................... 52 3-4-1. Introduction of FlexPDE 6 ................................................................ 52 3-4-2. Simulation of thermoelectric materials ............................................. 52 3-4-3. Boundaries and boundary conditions ................................................ 53 Chapter 4. Homogeneous Bi-Te(Se) compounds ......................................................... 54 4-1. Annealing effects .......................................................................................... 54 4-1-1. Characterization of microstructure .................................................... 54 4-1-2. Characterization of thermoelectric transport properties .................... 59 4-2. Effects of doping silver and copper elements ............................................... 65 4-2-1. Basic characterization ....................................................................... 65 4-2-2. Characterization of thermoelectric transport properties .................... 66 4-3. Doping mechanisms of silver elements in Bi-Te(Se) compounds ................ 71 Chapter 5. Thermoelectric properties of junction structured bulk-materials ............... 85 5-1. Basic characterization ................................................................................... 85 5-1-1. Characterization of the samples with gradient doping profiles ......... 85 5-1-2. Characterization of the samples with PN junction ............................ 89 5-2. Transverse voltage effects ............................................................................. 91 5-2-1. Experimental observation .................................................................. 91 5-2-2. Simulation and theoretical derivation ............................................... 94 5-3. Module design and assembly ........................................................................ 99 5-3-1. Design of electrode arrangement ....................................................... 99 5-3-2. Experimental assembly of modules ................................................. 102 5-4. Optimization of transverse equipotential modules by simulation .............. 106 VI 5-4-1. Two-dimensional temperature gradient ........................................... 106 5-4-2. Heights of PN couple ...................................................................... 109 5-4-3. Material with anisotropic transport properties ................................ 111 5-4-4. Lengths of upper electrodes ............................................................ 113 5-5. Characterization of equipotential module ................................................... 115 5-5-1. Comparison of transverse and traditional modules ......................... 115 5-5-2. Equipotential modules with different lengths of electrodes ............ 117 5-5-3. An equipotential transverse module with 12 PN couples ................ 118 5-6. Characterization of conjugate module ........................................................ 120 5-6-1. A conjugate transverse module with 4 PN couples ......................... 120 5-6-2. Parallel circuit connection for a conjugate transverse module ........ 125 Chapter 6. Conclusions and future prospects ............................................................. 128 6-1. Conclusions ................................................................................................ 128 6-2. Future prospects .......................................................................................... 130 References .................................................................................................................. 133 Appendix .................................................................................................................... 137

    1. G. S. Nolas, J. Sharp, H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Development; Springer: 2001; chapter 1, pp 1-14.
    2. D. M. Rowe, Thermoelectrics Handbook: Macro to Nano; Taylor and Francis: 2006; chapter 1, pp 1-16.
    3. F. J. DiSalvo, Science 285, 703-706 (1999).
    4. J. R. Sootsman, D. Y. Chung, M. G. Kanatzidis, Angew Chem., In. Ed 48, 8616-8639 (2009).
    5. J. Bardeen, W. Shockley, Phys. Rev. 80, 72-80 (1950).
    6. Y. Pei, H. Wang, G. J. Snyder, Adv. Mater. 24, 6125-6135 (2012).
    7. H. Wang, Y. Pei, A.D. Lalonde, G. J. Snyder, Appl. Phys. Sci. 109, 9705-9709 (2012).
    8. G. E. Stillman, C. M. Wolfe, J. O. Dimmock, J. Phys. Chem. Solids 31, 1199-1204 (1970).
    9. L. D. Hicks, M. S. Dresselhaus, Phys. Rev. B 47, 727-731 (1993).
    10. J. P. Heremans, V. Jovovic, E. S. Toberer, A.
    11. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G. J. Snyder, Science 321, 554-557 (2008).
    12. Y. W. Tung, M. L. Cohen, Phys. Rev. 180, 823-826 (1969).
    13. J. M. O. Zide, D. Vashaee, Z. X. Bian, G. Zeng, J. E. Bowers, A. Shakouri, A. C. Gossard, Phys. Rev. B 74, 205335 (2006).
    14. J. P. Heremans, C. M. Thrush, D. T. Morelli, J. Appl. Phys. 98, 063703 (2005)
    15. B. Paul, A. Kumar V., P. Banerji, J. Appl. Phys. 108, 064322 (2010).
    16. A. Soni, Y. Shen, M. Yin, Y. Zhao, L. u, X. Hu, Z. Dong, K. A. Khor, M. S. Dresselhaus, Q. Xiong, Nano Lett. 12, 4305-4310 (2012).
    17. A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, G. Chen, Energy Environ. Sci. 2, 466-479 (2009).
    18. M. S. Jeng, R. Yang, D. Song, G. Chen, J. Heat Transfer 130, 042410 (2008).
    19. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yo, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, Z. Ren, Science 320, 634-638 (2008).
    20. Y. Lan, B. Poudel, Y. Ma, D. Wang, M. S. Dresselhaus, G. Chen, Z. Ren, Nano Lett. 9, 1419-1422 (2009).
    21. S. Fan, J. Zhao, Q. Yan, J. Ma, H. H. Hng, J. Electron. Mater. 40, 1018-1023 (2011).
    134
    22. A. Soni, Y. Zhao, L. Yu, M. K. K. Aik, M. S. Dresselhaus, Q. Xiong, Nano Lett. 12, 1203-1209 (2012).
    23. S. Fan, J. Zhao, Q. Yan, J. Ma, H. H. Hng, J. Electron. Mater. 40, 1018-1023 (2011).
    24. S. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Synder, S. W. Kim, Science 348, 109-114 (2015).
    25. X. Yan, B. Poudel, Y. Ma, W. S. Liu, G. Joshi, H. Wang, Y. Lan, D. Wang, G. Chen, Z. F. Ren, Nano Lett. 10, 3373-3378 (2010).
    26. D. M. Rowe, Thermoelectrics Handbook: Macro to Nano; Taylor and Francis: 2006; chapter 38, pp 1-12.
    27. L. M. Rogers, A. J. Crocker, J. Phys. D: Appl. Phys. 4, 1016-1024 (1971).
    28. A. J. Crocker, B. J. Sealy, J. Phys. Chem. Solids 33, 2183-2190 (1972).
    29. P. M. Nikolic, J. Phys. D: Appl. Phys. 17, 341-344 (1966).
    30. G. Wang, T. Cagin, Phys. Rev. B 76, 075201 (2007).
    31. J. R. Drabble, C. H. L. Goodman, J. Phys. Chem. Solids 5, 142-144 (1958).
    32. P. Larson, S. D. Mahanti, Phys. Rev. B 61, 8162-8171 (2000).
    33. G. A. Thomas, D. H. Rapke, R. B. Van Dover, L. F. Mattheis, W. A. Surden, L. F. Schneemaper, J. V. Waszczak, Phys. Rev. B 46, 1553-1556 (1992).
    34. H. Kohler, Phys. Status Solidi B 73, 95-104 (1976).
    35. B. Schroeder, A. Von Middendorff, H. Kohler, and G. Landwehr, Phys. Status Solidi B 59, 561-568 (1973).
    36. S. K. Mishrayz, S. Satpathyyz, O. Jepsenz J. Phys.: Condens. Mater. 9, 461-470 (1997).
    37. M. Carle, P. Pierrat, C. Lahalle-Gravier, S. Scherrer, H. Scherrer, J. Phys. Chem. Solids 56, 201-209 (1995).
    38. T. Caillat, L. Gailliard, H. Scherrer, S. Scherrer, J. Phys. Chem. Solids 54, 575-581 (1993).
    39. G. R. Miller, C. Li, J. Phys. Chem. Solids 26, 173-177 (1965).
    40. J. P. Fleurial, L. Gailliard, R. Triboulet, H. Scherrer, S. Scherrer, J. Phys. Chem. Solids 49, 1237-1247 (1988).
    41. J. Horak, K. Cermak, L. Koudelka, J. Phys. Chem. Solids 47, 805-809 (1986).
    42. S. Karamazov. P. Lostak, J. Horak, R. Kuzel, Phys. Status Solidi A 148, 229-237 (1995).
    43. Z. Stary, J. Horak, M. Stordeur, M. Stolzer, J. Phys. Chem. Solids 49, 29-34 (1988).
    44. J. Horak, Z. Stary, P. Lostak, J. Pancir, J. Phys. Chem. Solids 51, 1353-1360
    135
    (1990).
    45. J. Horak, Z. Stary, J. Votinsky, Philos. Mag. B 69, 31-38 (1994).
    46. D. Perrin, M. Chitroub, S. Scherrer, H. Scherrer, J. Phys. Chem. Solids 61, 1687-1691 (2000).
    47. S. Fujimoto, S. Sano, T. Kajitani, J. Alloys Compd. 443, 182-190 (2007).
    48. J. Y. Yang, T. Aizawa, A. Yamamoto, T. Ohta, J. Alloys Compd. 312, 326-330 (2000).
    49. S. Wang, G. Tan, W. Xie, G. Zheng, H. Li, J. Yang, Z. Tang, J. Mater. Chem. 22, 20943-20951 (2012).
    50. S. N. Chizhevskaya L. E. Shelimova, Inorg. Mater. 31, 1083-1095 (1995).
    51. O. Beckmann, R. Bergvall, Ark. Fys. 24, 113-122 (1963).
    52. J. Navratil, I. Klichova, S. Karamazov, J. Sramkova, J. Horak, J. Solid State Chem. 140, 29-37 (1998).
    53. J. Yang, R. Chen, X. Fan, S. Bao, W. Zhu, J. Alloys Compd. 407, 330-333 (2006).
    54. X. Zhang, X. Ma, Q. Lu, F. Zhang, Y. Liu, J. Zhang, L. Wang, J. Electron. Mater. 40, 773-777(2011).
    55. X. Duan, J. Yang, C. Xiao, W. Zhu, J. Phys. D: Appl. Phys. 40, 5971-5974 (2007).
    56. J. Bludska, I. Jakubec, C. Drasar, P. Lostak, J. Horak, Philos. Mag. 87, 325-335 (2007).
    57. S. Fujimo, S. Sano, T. Kajitani, J. Alloys Compd. 443, 182-190 (2007).
    58. J. Bludska, S. Karamazov, J. Navratil, I. Jakubec, J. Horak, Solid State Ionics 171, 251-259 (2004).
    59. W. S. Liu, Q. Zhang, Y. Lan, S. Chen, X. Yan, Q. Zhang, H. Wang, D. Wang, G. Chen, Z. Ren, Adv. Energy Mater. 1, 577-587 (2011).
    60. J. D. Keys, H. M. Dutton, J. Phys. Chem, Solids 24, 563-571 (1963). R. O. Carlson, J. Phys. Chem. Solids 13, 65-70 (1960).
    61. H. Scherrer, B. Hammou, J. P. Fleurial, S. Scherrer, Phys. Lett. A 130, 161-165 (1988).
    62. M. Chitroub, S. Scherrer, H. Scherrer, J. Phys. Chem. Solids 61, 1693-1701 (2000).
    63. D. M. Roe, Materials, Preparation, and Characterization in Thermoelectrics; Taylor and Francis: 2012; chapter 1 pp 1-12.
    64. K. Takahashi, T. Kanno, A. Sakai, H. Tamaki, H. Kusada, Y. Yamada, Sci. Rep. 3, 1501 (2013).
    65. A. Saikai, T. Kanno, K. Takahashi, H. Tamaki, H. Kusada, Y. Yamada, H. Abe, Sci. Rep. 4, 6089 (2014).
    136
    66. G. Span, M. Wagner, S. Holzer, T Grasser, 25th International Conference on Thermoelectrics 23-28 (2006).
    67. M. Wagner, G. Span, S. Holzer, T Grasser, 2006 International Conference on Simulation of Semiconductor Processes and Devices 397-400 (2006).
    68. A. Becker, R. Chavez, N. Petermann, G. Schierning, R. Schmechel, J. Electro. Mater. 42, 2297-2300 (2013).
    69. R. Chavez, S. Angst, J. Hall. J. Stoetzel, V. Kessler, L. Bitzer, F. Maculewicz, N. Benson, H. Wiggers, D. Wolf, G G. Schierning, R. Schmechel, J. Electro. Mater. 43, 2376-2383 (2014).
    70. G. Schierning, Phys. Status Solidi A 221, 1235-1249 (2014).
    71. J. Y. Yang, T. Aizawa, A. Yamamoto, T. Ohta, Mater. Sci. Eng. B 85, 34-37 (2001).
    72. S. S. Kim, S. Yamamoto, T. Aizawa, A. Yamamoto, Mater. Trans. 46, 1506-1513 (2005).
    73. L. R. Testardi, G. K. McConnel, Rev. Sci. Instrum. 32, 1067-1068 (1961).
    74. F. Smits, Bell Syst. Tech. J. 37, 711-718 (1958).
    75. W. J. Paker, R. J. Jenkins, C. P. Butler, G. L. Abbott, J. Appl. Phys. 32, 1679-1684 (1961).
    76. R. W. Balluffi, S. M. Allen, W. C. Carter, Kinetics of Materials; Wiley: Hoboken: 2005; pp 253-283.
    77. W. R. George, R. Sharples, J. E. Thompson, Res. Notes, 768-179 (1959).
    78. J. M. Schultz, J. P. McHugh, W. A. Tiller, J. Appl. Phys. 33, 2443-2450 (1962).
    79. H. J. Goldsmid, Electronic Refrigeration; Pion Limited Ed.: 1986; pp 20, 96.
    80. J. K. Lee, S. D. Park, B. S. Kim, M. W. Oh, S. H. Cho, B. K. Min, H. W. Lee, M. H. Kim, Electron. Mater. Lett. 6, 201-207 (2010).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE