簡易檢索 / 詳目顯示

研究生: 王昱翔
Wang, Yu Hsiang
論文名稱: A Fast Convex Geometry-Based Abundance Estimation Algorithm for Hyperspectral Imaging
基於凸幾何之豐度估計快速演算法應用於高光譜影像
指導教授: 祁忠勇
Chi, Chong Yung
口試委員: 詹宗翰
Chan, Tsung Han
李夢麟
Li, Meng Lin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
中文關鍵詞: 高光譜影像豐度估計
外文關鍵詞: hyperspectral imaging, abundance estimation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們著重在高光譜分解(hyperspectral unmixing)中的一個重要的步驟-豐度估計(abundance estimation),所謂的豐度是指每個端元(endmember,即物質之光譜特徵)在一像素(pixel)中的含量比例。在豐度為非負且總合為一(non-negative and sum-to-one)之限制下,解豐度估計的問題是一完全約束最小二乘法(fully constrained least squares, FCLS)問題。然而高光譜影像含有的光譜波段很多,使得傳統最佳化做法的運算複雜度太高,因此為加速高光譜分解的步驟,維度縮減(dimension reduction)扮演重要的角色;另一方面,即使FCLS問題有嚴格凸(strictly convex)的特性,但由於影像的總像素個數可能非常多,使得解此問題會導致高運算複雜度。本論文是利用豐度估計之問題的幾何性質,提出一快速的豐度估計演算法。此論文有兩個主要貢獻:首先,我們將維度縮減問題重構成一矩陣分解問題,然後以眾所週知的Cholesky分解技術解決此問題。其次,我們對於豐度估計提出一個閉合式(closed-form)近似解。因大部分的高光譜像素會落於端元所形成的單體(simplex) (即端元之凸包(convex hull))內,對於此單體內的像素,所提出之閉合式近似解可被證明為豐度估計問題的全局最優解(global optimum)。此外,不論影像的像素數目多寡,所提出之閉合式近似解中許多變數只需計算一次,所以此近似解的運算效率很高。最後,我們以電腦模擬和真實數據實驗,將我們提出的演算法與現存的豐度估計演算法作比較,以驗證所提出之演算法的優良效能和實用性。


    This thesis considers a widely studied problem in hyperspectral unmixing---the abundance estimation of hyperspectral images. Abundances are the proportions of different endmembers (the spectral signatures of materials) present in an imaging pixel. Conventionally, these are estimated by solving least-squares problems under the sum-to-one constraint and the non-negativity constraint, known as the fully constrained least squares (FCLS) problem. However, those traditional optimization methods may yield high computational complexity, since the number of spectral bands in hyperspectral images is high (usually several hundreds). Hence, dimension reduction of the data plays a pivotal role in speeding up the unmixing stage. On the other hand, the total number of pixels in the considered image may be very large. Therefore, solving the FCLS problem becomes computationally complex, although it is strictly convex. In this thesis, based on some geometric properties of the abundance estimation problem, we propose a fast abundance estimation algorithm. The main contributions are twofold:
    Firstly, we formulate the dimension reduction problem into a matrix factorization problem and solve it by a modified version of the widely known Cholesky factorization technique.
    Secondly, we propose a closed-form approximation as the abundance estimates. Due to the simplex structure of the hyperspectral data, most pixels lie within the simplex with vertices being the endmembers, i.e., the convex hull of the endmembers. For those pixels in the simplex, it can be proved that the proposed closed-form abundance approximation exactly yields the global optimum solution to the abundance estimation problem. In addition, the computation of the derived closed-form formula is highly efficient, since some quantities in this formula need to be computed only once, regardless of the number of pixels. Finally, the superior computational efficiency and estimation accuracy of the proposed algorithm over state-of-the-art algorithms are verified through simulations and real data experiments.

    Chinese Abstract ii Abstract iii Acknowledgments v List of Figures viii List of Tables x List of Notations 1 1 Introduction to Hyperspectral Imaging 2 2 Signal Model and Problem Formulation 6 2.1 Linear Mixing Model and Assumptions . . . . . . . . . . . . . . . . . 6 2.2 Abundance Estimation Problem . . . . . . . . . . . . . . . . . . . . . 8 2.3 A Literature Review of A State-of-the-Art Algorithm: FCLS . . . . . 9 3 Dimension Reduction 10 3.1 Convex Geometry Preliminary . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Method I: Gram-Schmidt Procedure . . . . . . . . . . . . . . . . . . . 12 3.3 Method II: Cholesky Factorization . . . . . . . . . . . . . . . . . . . . 13 4 Convex Geometry-Based Abundance Estimation Algorithm 17 4.1 Geometrical Meaning of Abundance Estimation Problem . . . . . . . 17 4.2 Solution to Problem (4.4) . . . . . . . . . . . . . . . . . . . . . . . . 21 5 Computer Simulations 24 5.1 Monte Carlo Simulations with Dirichlet Distributed Abundances . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.2 Simulations with Spatially Correlated and Sparse Abundances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6 Real Data Experiments 32 6.1 Remote Sensing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.2 Food Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 7 Conclusions 43 A Proof of Generalized Pythagorean Lemma 44 B Proof of Theorem 4.2.1 46 Bibliography 48

    [1] D. Heinz and C.-I. Chang, “Fully constrained least squares linear mixture analysis
    for material quantification in hyperspectral imagery,” IEEE Trans. Geosci.
    Remote Sens., vol. 39, no. 3, pp. 529–545, Mar. 2001.
    [2] A. Plaza, P. Martinez, J. Plaza, and R. Perez, “Spatial/spectral analysis of
    hyperspectral image data,” in Proc. IEEE Workshop on Advances in Techniques
    for Analysis of Remotely Sensed Data, Oct 2003, pp. 298–307.
    [3] N. Keshava and J. F. Mustard, “Spectral unmixing,” IEEE Signal Process. Mag.,
    vol. 19, no. 1, pp. 44–57, Jan. 2002.
    [4] G. Shaw and D. Manolakis, “Signal processing for hyperspectral image exploitation,”
    IEEE Signal Process. Mag., vol. 19, no. 1, pp. 12–16, Jan. 2002.
    [5] D. W. Sun, Hyperspectral Imaging for Food Quality Analysis and Control. Elsevier,
    2010.
    [6] B. Park, W. Windham, K. Lawrence, and D. Smith, “Contaminant classification
    of poultry hyperspectral imagery using a spectral angle mapper algorithm,”
    Biosystems Engineering, vol. 96, no. 3, pp. 323 – 333, 2007.
    [7] C.-I. Chang and Q. Du, “Estimation of number of spectrally distinct signal
    sources in hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 42,
    no. 3, pp. 608–619, Mar. 2004.
    [8] J. M. Bioucas-Dias and J. M. P. Nascimento, “Hyperspectral subspace identification,”
    IEEE Trans. Geosci. Remote Sens., vol. 46, no. 8, pp. 2435–2445, 2008.
    [9] A. Ambikapathi, T.-H. Chan, C.-Y. Chi, and K. Keizer, “Hyperspectral data
    geometry-based estimation of number of endmembers using p-norm-based pure
    pixel identification algorithm,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5,
    pp. 2753–2769, 2013.
    [10] M. E. Winter, “N-FINDR: An algorithm for fast autonomous spectral endmember
    determination in hyperspectral data,” in Proc. SPIE Conf. Imaging
    Spectrometry, Pasadena, CA, Oct. 1999, pp. 266–275.
    [11] J. W. Boardman, F. A. Kruse, and R. O. Green, “Mapping target signatures
    via partial unmixing of AVIRIS data,” in Proc. Summ. JPL Airborne Earth Sci.
    Workshop, vol. 1, Pasadena, CA, Dec. 9-14, 1995, pp. 23–26.
    [12] J. M. P. Nascimento and J. M. Bioucas-Dias, “Vertex component analysis: A fast
    algorithm to unmix hyperspectral data,” IEEE Trans. Geosci. Remote Sens.,
    vol. 43, no. 4, pp. 898–910, Apr. 2005.
    [13] M. D. Craig, “Minimum-volume transforms for remotely sensed data,” IEEE
    Trans. Geosci. Remote Sens., vol. 32, no. 3, pp. 542–552, May 1994.
    [14] L. Miao and H. Qi, “Endmember extraction from highly mixed data using
    minimum volume constrained nonnegative matrix factorization,” IEEE Trans.
    Geosci. Remote Sens., vol. 45, no. 3, pp. 765–777, 2007.
    [15] T.-H. Chan, C.-Y. Chi, Y.-M. Huang, and W.-K. Ma, “A convex analysisbased
    minimum-volume enclosing simplex algorithm for hyperspectral unmixing,”
    IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4418–4432, 2009.
    [16] C.-H. Lin, C.-Y. Chi, Y.-H. Wang, and T.-H. Chan, “A fast hyperplane-based
    minimum-volume enclosing simplex algorithm for blind hyperspectral unmixing,”
    accepted as a regular paper in IEEE Trans. Signal Processing, Apr. 2015.
    [17] G. Strang, Introduction to Linear Algebra, 3rd ed. Wellesley-Cambridge Press,
    2003.
    [18] C. Lawson and R. Hanson, Solving Least Squares Problems, 3rd ed. Prentice-
    Hall, 1974.
    [19] V. Franc, “Optimization Algorithms for Kernel Methods,” Ph.D. dissertation,
    Czech Technical University, 2005.
    [20] R. Heylen, D. Burazerovic, and P. Scheunders, “Fully constrained least squares
    spectral unmixing by simplex projection,” IEEE Trans. Geosci. Remote Sens.,
    vol. 49, no. 11, pp. 4112–4122, Nov 2011.
    [21] P. Honeine and C. Richard, “Geometric unmixing of large hyperspectral images:
    A barycentric coordinate approach,” IEEE Trans. Geosci. Remote Sens., vol. 50,
    no. 6, pp. 2185–2195, June 2012.
    [22] M. Grant, S. Boyd, and Y. Ye, “CVX: Matlab software for disciplined convex
    programming,” http://cvxr.com/cvx, 2008.
    [23] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over
    symmetric cones,” Optimization Methods and Software, vol. 11-12, pp. 625–653,
    1999.
    [24] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Univ. Press,
    2004.
    [25] W. Cheney and D. Kincaid, Linear Algebra: Theory and Applications. Jone
    and Bartlett Learning, 2009.
    [26] D. Kincaid andW. Cheney, Numerical Analysis: Mathematics of Scientific Com-
    puting, 3rd ed. American Mathematical Society, 2002.
    [27] S. Friedberg, A. Insel, and L. Spence, Linear Algebra, 4th ed. Prentice Hall,
    Upper Saddle River, NJ, 2003.
    [28] V. Franc and V. Hlavac, “Statistical pattern recognition toolbox,” 2013.
    [Online]. Available: http://cmp.felk.cvut.cz/cmp/software/stprtool/index.html
    [29] R. Clark, G. Swayze, R. Wise, E. Livo, T. Hoefen, R. Kokaly, and S. Sutley,
    “USGS digital spectral library splib06a: U.S. Geological Survey, Digital Data
    Series 231,” 2007. [Online]. Available: http://speclab.cr.usgs.gov/spectral.lib06
    [30] B. A. Frigyik, A. Kapila, and M. R. Gupta, “Introduction to the Dirichlet
    distribution and related processes,” Tech. Rep., Department of Electrical
    Engineering, University of Washington, Seattle, 2010. [Online]. Available:
    http://www.semanticsearchart.com/downloads/UWEETR-2010-0006.pdf
    [31] M.-D. Iordache, J. Bioucas-Dias, and A. Plaza, “Total variation spatial regularization
    for sparse hyperspectral unmixing,” IEEE Trans. Geosci. Remote Sens.,
    vol. 50, no. 11, pp. 4484–4502, Nov 2012.
    [32] J. Chen, C. Richard, and P. Honeine, “Nonlinear estimation of material abundances
    in hyperspectral images with ℓ1-norm spatial regularization,” IEEE
    Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2654–2665, May 2014.
    [33] AVIRIS Free Standard Data Products. [Online]. Available: http://aviris.jpl.
    nasa.gov/html/aviris.freedata.html
    [34] L. Miao and H. Qi, “Endmember extraction from highly mixed data using
    minimum volume constrained nonnegative matrix factorization,” IEEE Trans.
    Geosci. Remote Sens., vol. 45, no. 3, pp. 765–777, 2007.
    [35] G. Swayze, R. Clark, S. Sutley, and A. Gallagher, “Ground-truthing AVIRIS
    mineral mapping at Cuprite, Nevada,” in Proc. Summ. 4th Annu. JPL Airborne
    Geosci. Workshop, vol. 2, 1992, pp. 47–49.
    [36] G. Swayze, “The hydrothermal and structural history of the Cuprite Mining District,
    southwestern Nevada: An integrated geological and geophysical approach,”
    Ph.D. dissertation, University of Colorado, Boulder, 1997.
    [37] N. Dobigeon, J.-Y. Tourneret, and C.-I. Chang, “Semi-supervised linear spectral
    unmixing using a hierarchical bayesian model for hyperspectral imagery,” IEEE
    Trans. Signal Process, vol. 56, no. 7, pp. 2684–2695, July 2008.
    [38] E. Christophe, D. Leger, and C. Mailhes, “Quality criteria benchmark for hyperspectral
    imagery,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 9, pp.
    2103–2114, Sept 2005.
    [39] N. Dobigeon, S. Moussaoui, M. Coulon, J.-Y. Tourneret, and A. Hero, “Joint
    bayesian endmember extraction and linear unmixing for hyperspectral imagery,”
    IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4355–4368, Nov 2009.
    [40] N. Dobigeon, J.-Y. Tourneret, C. Richard, J. Bermudez, S. McLaughlin, and
    A. Hero, “Nonlinear unmixing of hyperspectral images: Models and algorithms,”
    IEEE Trans. Signal Process, vol. 31, no. 1, pp. 82–94, Jan 2014.
    [41] M. Kamruzzaman, D. Barbin, G. ElMasry, D.-W. Sun, and P. Allen, “Potential
    of hyperspectral imaging and pattern recognition for categorization and authentication
    of red meat,” Innovative Food Science and Emerging Technologies, vol. 16,
    pp. 316–325, 2012.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE