簡易檢索 / 詳目顯示

研究生: 李韋慶
Lee, Wei-Ching
論文名稱: 氧化鍺奈米粒子之綠色合成技術之開發與其於鋰離子電池之應用
Green Synthesis of Germanium Oxide Nanoparticles and Their Applications on Lithium-ion Batteries
指導教授: 段興宇
口試委員: 曾院介
湯學成
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 81
中文關鍵詞: 氧化鍺奈米粒子鋰離子電池綠色合成技術
外文關鍵詞: Germanium oxide nanoparticle, Li-ion battery, Green synthesis
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在高效能鋰電池負極材料中,矽(silicon)、鍺(germanium)、錫(tin)可以與大量的鋰離子反應,相較於市面上常用的石墨(Graphite),擁有相當高的電容量。鍺元素(germanium)常被廣泛地討論,不只是因為鍺擁有高電容量(1384mAh/g),於常溫下,鋰離子的質傳速率,鍺比矽元素高出了約100倍(Two order),但是目前合成鍺多需於高溫下合成,且無法連續式的製備, 會造成生產成本的增加。在此研究上, 我們提出一種新穎且環保的合成方式。在反微胞(reverse micelle)系統,於常溫的狀態下,可以合成出產率近乎100%,且結晶性十分良好的二氧化鍺(germanium(Ⅳ) oxide)。我們以二氧化鍺奈米粒子製作鋰電池負極材料。相較於常見的非結晶性二氧化鍺薄膜的電池電容量在數十個循環後就會衰退,以結晶性二氧化鍺奈米粒子作為負極可顯示顯著地提升鋰電池的效能。於0.1C充放速率進行100次循環後,可逆電容仍高達約1050mAh/g;於快充快放的情況,8C的速率下,可逆電容有250mAh/g。最後我們也已發展出一套連續式反微胞合成系統製備奈米二氧化鍺,並製作出可適用於多種電子裝置的高電量軟包型電池。


    In the high performance Li-ion battery anode material, silicon, germanium and tin have high capacities due to their ability to react with abundant of Li-ion, compared with graphite that used in the market today. Germanium has been widely studied not only because it has high theoretical capacity (1384mAh/g), but also it has the room-temperature diffusion rate two order higher than that of silicon. However, the cost of producing germanium material is really high and cannot be continuously produced. In this study, we propose a novel and environmental-friendly method, which is carried out in a reverse micelle system, for the synthesis of germanium oxide nanoparticles. High yield (almost 100%) and good crystallinity germanium oxide nanoparticles were synthesized. The electrochemical performance of germanium oxide nanoparticles in Li-ion battery is obviously promising, in comparison to amorphous germanium oxide thin film. These anodes which are made of germanium oxide have a reversible capacity approximately 1050mAh/g at a rate of 0.1C. The anode reversible capacity is about 250mAh/g when cycled at 8C. Finally, we attempt to develop a continuous scale-up procedure in producing germanium oxide nanoparticles, and we successfully manufacture high capacity pouch type cell for a variety of electronic devices.

    第1章、前言 1 1.1、鋰電池發展: 1 1.2、研究動機: 2 第2章、文獻回顧 4 2.1、鍺基材料的介紹: 4 2.1.1、鍺的簡介: 4 2.1.2、鍺的化學性質: 4 2.1.3、鍺粒子的製備及應用: 6 2.1.4、二氧化鍺的簡介: 7 2.2、使用反微胞法製備二氧化鍺奈米粒子: 9 2.2.1、前言: 9 2.2.2、界面活性劑的基本觀念: 10 2.2.3、微胞的形成: 13 2.2.4、微乳化(microemulsion)系統: 15 2.2.5、使用反微胞方式製備奈米粒子: 16 2.2.6、反微胞法合成二氧化鍺奈米粒子: 17 2.3、鋰電池簡介 22 2.3.1、鋰電池的歷史沿革: 22 2.3.2、鋰電池的工作原理: 23 2.3.3、鋰電池之正極材料: 24 Ⅰ、層狀氧化物: 24 Ⅱ、尖晶石結構: 25 Ⅲ、橄欖石結構: 26 2.3.4、鋰電池之負極材料: 27 Ⅰ、合金材料: 27 Ⅱ、金屬氧化物: 29 2.3.5、鋰電池負極材料使用氧化物: 31 2.3.6、鋰電池負極材料使用二氧化鍺奈米粒子: 35 2.3.7、鋰離子二次電池電解液: 41 2.3.8、鋰離子二次全電池(Li-ion Full Cell): 45 第3章、實驗材料與器材 50 3.1、實驗藥品: 50 3.1.1、藥品化學結構式: 50 3.2、鑑定儀器: 51 3.2.1、組電池藥品與器材: 51 第4章、實驗合成步驟及電性測試 52 4.1、批次製備奈米二氧化鍺粒子: 52 4.1.1、連續式生產奈米二氧化鍺粒子: 54 4.2、製作鋰電池二氧化鍺負極材料步驟: 55 第5章、實驗結果與討論 59 5.1、批次小量製程(Batch System): 59 5.2、量產製程(Scale-up System): 60 5.3、半電池及全電池測試: 62 5.4、結論: 69 Appendix: 69 參考文獻 73

    1. Notter, D. A.; Gauch, M.; Widmer, R.; Wäger, P.; Stamp, A.; Zah, R.; Althaus, H.-J., Contribution of Li-Ion Batteries to the Environmental Impact of Electric Vehicles. Environmental Science & Technology 2010, 44 (17), 6550-6556.
    2. Feng, J. K.; Lai, M. O.; Lu, L., Influence of grain size on lithium storage performance of germanium oxide films. Electrochimica Acta 2012, 62 (0), 103-108.
    3. Yao, L.; Xu, G.; Dou, W.; Bai, Y., The control of size and morphology of nanosized silica in Triton X-100 based reverse micelle. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008, 316 (1–3), 8-14.
    4. Rimer, J. D.; Trofymluk, O.; Lobo, R. F.; Navrotsky, A.; Vlachos, D. G., Thermodynamics of Silica Nanoparticle Self-Assembly in Basic Solutions of Monovalent Cations. The Journal of Physical Chemistry C 2008, 112 (38), 14754-14761.
    5. Chang, W.-S.; Park, C.-M.; Kim, J.-H.; Kim, Y.-U.; Jeong, G.; Sohn, H.-J., Quartz (SiO2): a new energy storage anode material for Li-ion batteries. Energy & Environmental Science 2012, 5 (5), 6895-6899.
    6. Emsley, J., Nature's building blocks : an A-Z guide to the elements. Oxford University Press: Oxford; New York, 2001.
    7. Holleman, A. F. W. E. W. N., Lehrbuch der anorganischen Chemie. de Gruyter: Berlin; New York, 2007.
    8. Lévy, F.; Sheikin, I.; Grenier, B.; Huxley, A. D., Magnetic Field-Induced Superconductivity in the Ferromagnet URhGe. Science 2005, 309 (5739), 1343-1346.
    9. Tabet, N. A.; Salim, M. A., KRXPS study of the oxidation of Ge(001) surface. Applied Surface Science 1998, 134 (1–4), 275-282.
    10. Tabet, N. A.; Salim, M. A.; Al-Oteibi, A. L., XPS study of the growth kinetics of thin films obtained by thermal oxidation of germanium substrates. Journal of Electron Spectroscopy and Related Phenomena 1999, 101–103 (0), 233-238.
    11. Wiberg, E. W. N., Lehrbuch der anorganischen Chemie. Walter de Gruyter: Berlin; New York, 2007.
    12. Bayya, S. S.; Sanghera, J. S.; Aggarwal, I. D.; Wojcik, J. A., Infrared Transparent Germanate Glass-Ceramics. Journal of the American Ceramic Society 2002, 85 (12), 3114-3116.
    13. Greenwood, N. N. E. A., Chemistry of the elements. Butterworth-Heinemann: Oxford; Boston, 1997.
    14. Johnson, O. H., Germanium and its Inorganic Compounds. Chemical reviews 1952, 51 (3), 431-469.
    15. Beattie, I. R.; Jones, P. J.; Reid, G.; Webster, M., The Crystal Structure and Raman Spectrum of Ge5Cl12•GeCl4 and the Vibrational Spectrum of Ge2Cl6. Inorganic Chemistry 1998, 37 (23), 6032-6034.
    16. Winkler, C., Mittheilungen über das Germanium. Journal für Praktische Chemie 1887, 36 (1), 177-209.
    17. Quane, D.; Bottei, R. S., Organogermanium Chemistry. Chemical reviews 1963, 63 (4), 403-442.
    18. Satge, J., Reactive intermediates in organogermanium chemistry. In Pure and Applied Chemistry, 1984; Vol. 56, p 137.
    19. Tao, S.-H.; Bolger, P. M., Hazard Assessment of Germanium Supplements. Regulatory Toxicology and Pharmacology 1997, 25 (3), 211-219.
    20. Naumov, A. V., World market of germanium and its prospects. Russ. J. Non-ferrous Metals 2007, 48 (4), 265-272.
    21. Moskalyk, R. R., Review of germanium processing worldwide. Minerals Engineering 2004, 17 (3), 393-402.
    22. Vaughn, D. D., 2nd; Schaak, R. E., Synthesis, properties and applications of colloidal germanium and germanium-based nanomaterials. Chemical Society reviews 2013, 42 (7), 2861-79.
    23. Jun, Y.-w.; Choi, J.-s.; Cheon, J., Shape Control of Semiconductor and Metal Oxide Nanocrystals through Nonhydrolytic Colloidal Routes. Angewandte Chemie International Edition 2006, 45 (21), 3414-3439.
    24. 邱意雯, 利用Triton-X-100形成反式微胞調控二氧化鍺粒子的形態以及藉溶膠-凝膠法包覆於二氧化矽球之二氧化鍺奈米結構. 國立清華大學化學系碩士論文 2008, 11-14.
    25. 吳昇峰, 逆微乳化方式製造磁性奈米粒子之研究. 國立成功大學機械工程學系碩士論文 2004, 16-22.
    26. 郭清癸, 黃., 牟中原, 金屬奈米粒子的製造. 物理雙月刊 2001, 23 (6), 614-624.
    27. Lindman, H. W. a. B., Micelles, Physical Chemistry of Surfactant Association. 1978.
    28. Whitesides, G.; Kriebel, J.; Mayers, B., Self-Assembly and Nanostructured Materials. In Nanoscale Assembly, Huck, W. S., Ed. Springer US: 2005; pp 217-239.
    29. Grzelczak, M.; Vermant, J.; Furst, E. M.; Liz-Marzán, L. M., Directed Self-Assembly of Nanoparticles. ACS Nano 2010, 4 (7), 3591-3605.
    30. Tanford, C., Theory of Micelle Formation in Aqueous Solutions. The Journal af Physical Chemisrry 1974, 78 (24), 2469-79.
    31. Nikolic, M. S.; Olsson, C.; Salcher, A.; Kornowski, A.; Rank, A.; Schubert, R.; Fromsdorf, A.; Weller, H.; Forster, S., Micelle and vesicle formation of amphiphilic nanoparticles. Angewandte Chemie 2009, 48 (15), 2752-4.
    32. Whitesides, G. M.; Grzybowski, B., Self-assembly at all scales. Science 2002, 295 (5564), 2418-21.
    33. Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W., Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 1976, 72 (0), 1525-1568.
    34. Kawai, T.; Usui, Y.; Kon-No, K., Synthesis and growth mechanism of GeO2 particles in AOT reversed micelles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1999, 149 (1–3), 39-47.
    35. Wu, H. P.; Liu, J. F.; Ge, M. Y.; Niu, L.; Zeng, Y. W.; Wang, Y. W.; Lv, G. L.; Wang, L. N.; Zhang, G. Q.; Jiang, J. Z., Preparation of Monodisperse GeO2 Nanocubes in a Reverse Micelle System. Chemistry of Materials 2006, 18 (7), 1817-1820.
    36. Chiu, Y.-W.; Huang, M. H., Formation of Hexabranched GeO2 Nanoparticles via a Reverse Micelle System. The Journal of Physical Chemistry C 2009, 113 (15), 6056-6060.
    37. Jing, C.; Hou, J.; Zhang, Y., Morphology controls of GeO2 particles precipitated by a facile acid-induced decomposition of germanate ions in aqueous medium. Journal of Crystal Growth 2008, 310 (2), 391-396.
    38. Rimer, J. D.; Roth, D. D.; Vlachos, D. G.; Lobo, R. F., Self-Assembly and Phase Behavior of Germanium Oxide Nanoparticles in Basic Aqueous Solutions. Langmuir 2007, 23 (5), 2784-2791.
    39. Dey, A. N., Electrochemical Alloying of Lithium in Organic Electrolytes. Journal of The Electrochemical Society 1971, 118 (10), 1547-1549.
    40. Larcher, D.; Beattie, S.; Morcrette, M.; Edstrom, K.; Jumas, J.-C.; Tarascon, J.-M., Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. Journal of Materials Chemistry 2007, 17 (36), 3759-3772.
    41. WHITTINGHAM, M. S., Electrical Energy Storage and Intercalation Chemistry. Science 1976, 192 (4244), 1126-1127.
    42. Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B., LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin 1980, 15 (6), 783-789.
    43. Yoshino, A., The Birth of the Lithium-Ion Battery. Angewandte Chemie International Edition 2012, 51 (24), 5798-5800.
    44. Ji, L.; Lin, Z.; Alcoutlabi, M.; Zhang, X., Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy & Environmental Science 2011, 4 (8), 2682-2699.
    45. Goodenough, J. B.; Kim, Y., Challenges for Rechargeable Li Batteries†. Chemistry of Materials 2009, 22 (3), 587-603.
    46. Xu, B.; Qian, D.; Wang, Z.; Meng, Y. S., Recent progress in cathode materials research for advanced lithium ion batteries. Materials Science and Engineering: R: Reports 2012, 73 (5–6), 51-65.
    47. Scrosati, B.; Garche, J., Lithium batteries: Status, prospects and future. Journal of Power Sources 2010, 195 (9), 2419-2430.
    48. Park, C.-M.; Kim, J.-H.; Kim, H.; Sohn, H.-J., Li-alloy based anode materials for Li secondary batteries. Chemical Society reviews 2010, 39 (8), 3115-3141.
    49. Idota, Y.; Kubota, T.; Matsufuji, A.; Maekawa, Y.; Miyasaka, T., Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material. Science 1997, 276 (5317), 1395-1397.
    50. Courtney, I. A.; Dahn, J. R., Electrochemical and In Situ X‐Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites. Journal of The Electrochemical Society 1997, 144 (6), 2045-2052.
    51. Park, M.-S.; Kang, Y.-M.; Wang, G.-X.; Dou, S.-X.; Liu, H.-K., The Effect of Morphological Modification on the Electrochemical Properties of SnO2 Nanomaterials. Advanced Functional Materials 2008, 18 (3), 455-461.
    52. Connor, P. A.; Irvine, J. T. S., Novel tin oxide spinel-based anodes for Li-ion batteries. Journal of Power Sources 2001, 97–98 (0), 223-225.
    53. Cheng, L.; Li, X.-L.; Liu, H.-J.; Xiong, H.-M.; Zhang, P.-W.; Xia, Y.-Y., Carbon-Coated Li4Ti5O12 as a High Rate Electrode Material for Li-Ion Intercalation. Journal of The Electrochemical Society 2007, 154 (7), A692-A697.
    54. Wang, D.; Choi, D.; Li, J.; Yang, Z.; Nie, Z.; Kou, R.; Hu, D.; Wang, C.; Saraf, L. V.; Zhang, J.; Aksay, I. A.; Liu, J., Self-Assembled TiO2–Graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion. ACS Nano 2009, 3 (4), 907-914.
    55. Lin, Y.-M.; Klavetter, K. C.; Heller, A.; Mullins, C. B., Storage of Lithium in Hydrothermally Synthesized GeO2Nanoparticles. The Journal of Physical Chemistry Letters 2013, 4 (6), 999-1004.
    56. Wang, Y.; Lee, J. Y.; Chen , B.-H., Microemulsion Syntheses of Sn and SnO2-Graphite Nanocomposite Anodes for Li-Ion Batteries. Journal of The Electrochemical Society 2004, 151 (4), A563-A570.
    57. Nuli, Y.-N.; Zhao, S.-L.; Qin, Q.-Z., Nanocrystalline tin oxides and nickel oxide film anodes for Li-ion batteries. Journal of Power Sources 2003, 114 (1), 113-120.
    58. Brousse, T.; Retoux, R.; Herterich, U.; Schleich, D. M., Thin‐Film Crystalline SnO2‐Lithium Electrodes. Journal of The Electrochemical Society 1998, 145 (1), 1-4.
    59. Yoon, S.; Jo, C.; Noh, S. Y.; Lee, C. W.; Song, J. H.; Lee, J., Development of a high-performance anode for lithium ion batteries using novel ordered mesoporous tungsten oxide materials with high electrical conductivity. Physical Chemistry Chemical Physics 2011, 13 (23), 11060-11066.
    60. Wang, G. X.; Chen, Y.; Konstantinov, K.; Lindsay, M.; Liu, H. K.; Dou, S. X., Investigation of cobalt oxides as anode materials for Li-ion batteries. Journal of Power Sources 2002, 109 (1), 142-147.
    61. Yang, S.; Cui, G.; Pang, S.; Cao, Q.; Kolb, U.; Feng, X.; Maier, J.; Müllen, K., Fabrication of Cobalt and Cobalt Oxide/Graphene Composites: Towards High-Performance Anode Materials for Lithium Ion Batteries. ChemSusChem 2010, 3 (2), 236-239.
    62. Peña, J. s. S.; Sandu, I.; Joubert, O.; Pascual, F. S. n.; Areán, C. O.; Brousse, T., Electrochemical Reaction Between Lithium and β-Quartz GeO[sub 2]. Electrochemical and Solid-State Letters 2004, 7 (9), A278.
    63. Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V., Metal oxides and oxysalts as anode materials for Li ion batteries. Chemical reviews 2013, 113 (7), 5364-457.
    64. Yang, J.; Winter, M.; Besenhard, J. O., Small particle size multiphase Li-alloy anodes for lithium-ionbatteries. Solid State Ionics 1996, 90 (1–4), 281-287.
    65. Cho, Y. J.; Im, H. S.; Kim, H. S.; Myung, Y.; Back, S. H.; Lim, Y. R.; Jung, C. S.; Jang, D. M.; Park, J.; Cha, E. H.; Cho, W. I.; Shojaei, F.; Kang, H. S., Tetragonal Phase Germanium Nanocrystals in Lithium Ion Batteries. ACS Nano 2013.
    66. Cho, Y. J.; Im, H. S.; Myung, Y.; Kim, C. H.; Kim, H. S.; Back, S. H.; Lim, Y. R.; Jung, C. S.; Jang, D. M.; Park, J.; Cha, E. H.; Choo, S. H.; Song, M. S.; Cho, W. I., Germanium sulfide(II and IV) nanoparticles for enhanced performance of lithium ion batteries. Chemical communications 2013, 49 (41), 4661-3.
    67. Zhang, S. S., A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources 2006, 162 (2), 1379-1394.
    68. Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L.; Cui, Y., Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nano 2012, 7 (5), 310-315.
    69. Etacheri, V.; Haik, O.; Goffer, Y.; Roberts, G. A.; Stefan, I. C.; Fasching, R.; Aurbach, D., Effect of Fluoroethylene Carbonate (FEC) on the Performance and Surface Chemistry of Si-Nanowire Li-Ion Battery Anodes. Langmuir 2011, 28 (1), 965-976.
    70. Lin, Y.-M.; Klavetter, K. C.; Abel, P. R.; Davy, N. C.; Snider, J. L.; Heller, A.; Mullins, C. B., High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries. Chemical communications 2012, 48 (58), 7268-7270.
    71. Nakai, H.; Kubota, T.; Kita, A.; Kawashima, A., Investigation of the Solid Electrolyte Interphase Formed by Fluoroethylene Carbonate on Si Electrodes. Journal of The Electrochemical Society 2011, 158 (7), A798-A801.
    72. Ji, L.; Zheng, H.; Ismach, A.; Tan, Z.; Xun, S.; Lin, E.; Battaglia, V.; Srinivasan, V.; Zhang, Y., Graphene/Si multilayer structure anodes for advanced half and full lithium-ion cells. Nano Energy 2012, 1 (1), 164-171.
    73. Ren, J.-G.; Wu, Q.-H.; Hong, G.; Zhang, W.-J.; Wu, H.; Amine, K.; Yang, J.; Lee , S.-T., Silicon–Graphene Composite Anodes for High-Energy Lithium Batteries. Energy Technology 2013, 1 (1), 77-84.
    74. Eom, K.; Joshi, T.; Bordes, A.; Do, I.; Fuller, T. F., The design of a Li-ion full cell battery using a nano silicon and nano multi-layer graphene composite anode. Journal of Power Sources 2014, 249 (0), 118-124.
    75. Yuan, F.-W.; Yang, H.-J.; Tuan, H.-Y., Alkanethiol-Passivated Ge Nanowires as High-Performance Anode Materials for Lithium-Ion Batteries: The Role of Chemical Surface Functionalization. ACS Nano 2012, 6 (11), 9932-9942.
    76. Yuan, F.-W.; Tuan, H.-Y., Scalable Solution-Grown High-Germanium-Nanoparticle-Loading Graphene Nanocomposites as High-Performance Lithium-Ion Battery Electrodes: An Example of a Graphene-Based Platform toward Practical Full-Cell Applications. Chemistry of Materials 2014, 26 (6), 2172-2179.
    77. Seng, K. H.; Park, M. H.; Guo, Z. P.; Liu, H. K.; Cho, J., Catalytic role of Ge in highly reversible GeO2/Ge/C nanocomposite anode material for lithium batteries. Nano letters 2013, 13 (3), 1230-6.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE