研究生: |
何盛揚 Ho, Sheng-Yang |
---|---|
論文名稱: |
德林費爾德模上的邦別里-瓦勒-馬瑟理論 A Bombieri-Vaaler-Masser Theorem for Drinfeld Modules |
指導教授: |
張介玉
Chang, Chieh-Yu |
口試委員: |
于靖
Yu, Jing 魏福村 Wei, Fu-Tsun |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 22 |
中文關鍵詞: | 德林費爾德模 、邦別里-瓦勒理論 、馬瑟理論 、演算法 |
外文關鍵詞: | Drinfeld Modules, Bombieri-Vaaler Theorem, Masser's Theorem, Algorithm |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要:在本論文中,我們研究一個在德林費爾德模上的邦別里-瓦勒-馬瑟理論問
題。我們建立了一種演算法來計算在基本多項式環上定義的德林費爾德模上,由有
限多個整數點所生成的子模的秩。在附錄中,我們利用SageMath提供了計算結果和
程式碼。
In this thesis, we study a problem of Bombieri-Vaaler-Masser theorem for Drinfeld modules. We establish an effective algorithm to compute the rank of the submodule generated by a finite set of integral points of a Drinfeld module defined over the base polynomial ring. In the appendix, we provide computational results and the programming code in SageMath.
[1] G.W. Anderson. “t-Motives”. In: Duke Math. J. 53, no. 2, 457-502 (1986).
[2] G. W. Anderson, W. D. Brownawell, and M. A. Papanikolas. “Determination of the algebraic relations among special G-values in positive characteristic”. In: Ann. of Math. (2) 160, 237-313 (2004).
[3] E. Bombieri and J. Vaaler. “On Siegel’s Lemma”. In: Invent. math. 73, 11-32 (1983).
[4] W. D. Brownawell and M. A. Papanikolas. “A rapid introduction to Drinfeld modules, t-modules and t-motives”. In: G. Böckle, D. Goss, U. Hartl, and M. Papanikolas, editors, Proceedings of the conference on “t-motives: Hodge structures, transcendence and other motivic aspects”, BIRS, Banff, Canada 2009. European Mathematical Society (2016).
[5] C.-Y. Chang. “Linear relations among double zeta values in positive characteristic”. In: Camb. J. Math. 4, no. 3, 289-331. (2016).
[6] C.-Y. Chang and M. A. Papanikolas. “Algebraic independence of periods and logarithms of Drinfeld modules”. In:With an appendix by Brian Conrad, J. Amer. Math. Soc. 25, 123-150 (2012).
[7] C.-Y. Chang, M. A. Papanikolas, and J. Yu. “An effective criterion for Eulerian multizeta values in positive characteristic”. In: J. Eur. Math. Soc. (JEMS) 21, no. 2, 405-440. (2019).
[8] V. Drinfeld. “Elliptic modules”. In: Math. USSR-Sb 23 (1974), 561-592 (1974).
[9] O. Gezmi¸s and M. A. Papanikolas. “The de Rham isomorphism for Drinfeld modules over Tate algebras”. In: Journal of Algebra, volume 525, 1 May, Pages 454-496. (2019).
[10] Y.-L. Kuan and Y.-H. Lin. “Criterion for deciding zeta-like multizeta values in positive characteristic”. In: Exp. Math. 25, no. 3, 246-256. (2016).
[11] D. Masser. “Linear relations on algebraic groups”. In: Baker, A. (Ed.), New Advances in Transcendence Theory. Cambridge Univ. Press, pp. 248-262 (1988).
[12] C. L. Siegel. “Über einige Anwendungen diophantischer Approximationen”. In: Abh. Preuß. Akad.Wissenschaften, Phys.-math. Klasse, Nr. 1. (=Ges. Abh., I, 209-266) (1929).
[13] V. I. Solodovnikov. “Upper bounds on the complexity of solving systems of linear equations”. In: J Math Sci 29, 1482-1501 (1985).