簡易檢索 / 詳目顯示

研究生: 陳昱帆
Chen, Yu-Fan
論文名稱: 矽陽極材料中空奈米球殼結構設計以及超高電容量鋰離子電池開發與應用
Synchrotron radiation research in lithium-ion battery with advanced silicon anode material
指導教授: 李志浩
Lee, Chih-Hao
陳世偉
Chen, Shi-Wei
口試委員: 張家欽
Chan, Chia-Chin
陳燦耀
Chen, Tsan-Yao
學位類別: 碩士
Master
系所名稱: 理學院 - 先進光源科技學位學程
Degree Program of Science and Technology of Synchrotron Light Source
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 90
中文關鍵詞: 鋰離子電池矽球殼同步輻射光源
外文關鍵詞: Li-ion battery, Silicon spherical shell, Synchrotron Radiation Light Source
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰離子電池是相當重要的儲能設備,其應用範疇以及使用量,都不斷的持續增加,然而,鋰離子電池的性能一直無法顯著的提升,主要是因為陽極材料的發展相當相當緩慢。現今鋰離子電池約有99%依然使用石墨作為陽極材料,石墨作為鋰離子電池活性材雖然有相當好的穩定性,但是電容量已不能滿足新世代3C產品以及電動車等產品的應用要求,因此當下最重要的工作,即是開發新型的陽極材料。矽有高於石墨10倍的理論電容量,因此成為候選陽極材料,但是矽在充放電過程會產生相當大的體積變化,造成陽極材料崩解、固態電解質增生,進而導致電池失效,使得矽陽極鋰離子電池無法實際應用。雖然有許多文獻,利用奈米線結構、表面修飾、或特殊的電極板結構設計等方法,想要克服矽電極劇烈體積膨脹的問題,但是效果仍然有限。原因可能是對於矽電極充放電過程的結構變化,仍然不夠清楚。
    因此,本研究製作矽奈米球殼,作為鋰離子電池的陽極材料。先利用鎂蒸氣將二氧化矽奈米球表面還原,再經過酸洗及退火處理得到奈米矽球殼,之後進行XPS、EDX化學成分分析,TEM、SEM厚度及形貌觀察,XRD結構分析,以及電性、化性量測。實驗結果證實,以合成出來的奈米矽球殼作為鋰離子電池的陽極,有效提升電池效能以及穩定性。這主要是因為中空的奈米球殼結構,可以有效地提供體積膨脹空間,避免發生電極材料崩解等問題。
    為了探討矽鋰離子電池的嵌/脫鋰的機制以及詳細的結構變化,我們利用利用同步輻射光源技術做更進一步探討。由X光吸收光譜及粉末繞射光譜證實,充/放電過程發生的結構變化,主要是由鋰離子造成矽結構斷鍵所主導。


    Nowadays, Li-ion batteries are important on energy storage but most of appliances are
    still using traditional materials as the electrode. For instance, graphite is widely applied to
    99% of Li-ion batteries despite the theoretical capacity just 372 mAh/g.
    Silicon has a large theoretical capacity and it make it an attractive anode material, but
    volume expansion during cycling and an unstable Solid electrolyte interphase(SEI) has
    consume lithium source led to irreversible capacity increase.
    Artificial nanostructure is effectively to overcome the issue of volume expansion,
    therefore, this work aim to realize controllable synthesis of hollow spherical shell base on
    Silicon from common and easily accessible silica nanoparticles and magnesiothermic
    reduction and to study their morphology (TEM,SEM) components (EDX,XPS), structure
    (XRD,XAS), electrochemical performance as an anode of lithium-ion batteries (LIBs) and ex-situ X-ray studying.
    By using Double wall silicon spherical shell as anode material for lithium-ion batteries, electrochemical performance shows much better than commercial silicon powder, then we used ex-situ techniques based on XRD and XRD, the experiment result shows Lithium ion
    breakdown Si-Si bonding and Si have two phase reaction between Si and LixSi(x<=3.75) during cycling.

    目錄 摘要 i 致謝 iv 目錄 v 表目錄 vii 圖目錄 ix 第一章、緒論 1 1-1 前言 1 1-2 研究動機 3 1-3 文獻回顧及探討 5 1-3-1 矽基材嵌/脫鋰結構變化 5 1-3-2 矽電極結構修飾 7 1-3-3 粉體結構設計 9 1-3-4 粉體結晶性影響 12 第二章、基本原理及陽極材料發展 13 2-1 鋰離子電池工作原理 13 2-2 鋰離子電池構成 14 2-3 鋰離子電池陽極材料發展 15 2-4 陽極材料的分類 16 2-4-1 石墨(Graphite) 16 2-4-2 石墨烯(Graphene) 18 2-4-3 鋰鈦氧化合物(Lithiumtitaniumoxide) 19 2-4-4 鍺(Germanium) 20 2-5 固態電解質介面 21 第三章、實驗流程及量測設備 23 3-1 實驗流程圖 23 3-2 樣品製備 24 3-2-1 二氧化矽粒子製備原理及步驟 24 3-2-2 矽球殼製備原理及步驟 26 3-2-3 選擇性蝕刻 31 3-2-4 2032鈕扣鋰離子電池製備步驟 32 3-3 實驗量測儀器 33 3-3-1 電子顯微鏡(Electron Microscope) 33 3-3-2 X光能量散佈光譜儀(Energy Dispersive Spectrometer) 35 3-3-3 同步輻射光源 (Synchrotron Radiation Light Source) 36 3-3-4 X光粉末繞射 (X-ray Powder Diffraction Spectroscopy) 37 3-3-5 X光吸收光譜 (X-rayAbsorption Spectroscopy) 39 3-3-6 X光電子能譜 (X-ray Photoelectron Spectroscopy) 42 3-3-7 循環伏安法 (CyclicVoltammetry) 45 3-3-8 電池充/放電機台 47 第五章、實驗結果及討論 48 4-1 二氧化矽奈米球合成及鑑定 48 4-2 矽奈米球合成及鑑定 51 4-3 X光電子能譜表面化學成分分析 55 4-4 X光繞射晶體鑒定 59 4-5 電池性能測試 62 4-4-1 化成(Formation) 62 4-4-2 循環壽命測試(Cyclelifetest) 66 4-4-3 充/放電速率測試(C-ratetest) 68 4-4-4 循環伏安法(Cyclic voltammetry) 69 4-6 同步輻射光源量測 72 4-6-1 X光粉末繞射量測 72 4-6-2 X光吸收光譜量測 78 第五章、總結 82 第六章、未來展望 84 參考文獻 85

    1.Tarascon, J-M., and Michel Armand. "Issues and challenges facing rechargeable lithium batteries." Nature 414.6861 (2001): 359-367.

    2.Goriparti, Subrahmanyam, et al. "Review on recent progress of nanostructured anode materials for Li-ion batteries." Journal of Power Sources 257 (2014): 421-443.

    3.WIKI
    4.Teki, Ranganath, et al. "Nanostructured silicon anodes for lithium ion rechargeable batteries." Small 5.20 (2009): 2236-2242.

    5.Zamfir, Mihai Robert, et al. "Silicon nanowires for Li-based battery anodes: a review." Journal of Materials Chemistry A 1.34 (2013): 9566-9586.

    6.Kang, Kibum, et al. "Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery." Applied Physics Letters 96.5 (2010): 053110.
    7.http://resource.npl.co.uk/mtdata/phdiagrams/lisi.htm

    8.Chang, Jingbo, et al. "Multilayered Si Nanoparticle/Reduced Graphene Oxide Hybrid as a High‐Performance Lithium‐Ion Battery Anode." Advanced materials26.5 (2014): 758-764.

    9.Chang, Jingbo, et al. "Multilayered Si Nanoparticle/Reduced Graphene Oxide Hybrid as a High‐Performance Lithium‐Ion Battery Anode." Advanced materials26.5 (2014): 758-764.

    10.Chan, Candace K., et al. "High-performance lithium battery anodes using silicon nanowires." Nature nanotechnology 3.1 (2008): 31-35.

    11.Yao, Yan, et al. "Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings." Energy Environ. Sci. 5.7 (2012): 7927-7930.

    12.Cho, Jeong-Hyun, and S. Tom Picraux. "Enhanced lithium ion battery cycling of silicon nanowire anodes by template growth to eliminate silicon underlayer islands." Nano letters 13.11 (2013): 5740-5747.

    13.Ge, Mingyuan, et al. "Porous doped silicon nanowires for lithium ion battery anode with long cycle life." Nano letters 12.5 (2012): 2318-2323.

    14.Cho, Jaephil. "Porous Si anode materials for lithium rechargeable batteries."Journal of Materials Chemistry 20.20 (2010): 4009-4014.

    15.Yao, Yan, et al. "Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life." Nano letters 11.7 (2011): 2949-2954.

    16.Wen, Zhenhai, et al. "Rational design of carbon network cross-linked Si–SiC hollow nanosphere as anode of lithium-ion batteries." Nanoscale 6.1 (2014): 342-351.

    17.Niu, Jin, et al. "Towards Si@ SiO 2 core–shell, yolk–shell, and SiO 2 hollow structures from Si nanoparticles through a self-templated etching–deposition process." RSC Advances 4.56 (2014): 29434-29438.

    18.Chen, Shuru, et al. "Silicon core–hollow carbon shell nanocomposites with tunable buffer voids for high capacity anodes of lithium-ion batteries." Physical Chemistry Chemical Physics 14.37 (2012): 12741-12745.

    19.Wu, Hui, et al. "Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control." Nature nanotechnology 7.5 (2012): 310-315.

    20.McDowell, Matthew T., et al. "In situ TEM of two-phase lithiation of amorphous silicon nanospheres." Nano letters 13.2 (2013): 758-764.
    21. Scrosati, Bruno, and Jürgen Garche. "Lithium batteries: Status, prospects and future." Journal of Power Sources 195.9 (2010): 2419-2430.

    22.Lithium Ion Batteries – Principles and Key Technologies
    23.http://amuseum.cdstm.cn/AMuseum/crystal/130304.html

    24.Pan, Dengyu, et al. "Li storage properties of disordered graphene nanosheets."Chemistry of Materials 21.14 (2009): 3136-3142.

    25.Vinayan, B. P., and S. Ramaprabhu. "Facile synthesis of SnO 2 nanoparticles dispersed nitrogen doped graphene anode material for ultrahigh capacity lithium ion battery applications." Journal of Materials Chemistry A 1.12 (2013): 3864-3871.

    26.http://wenku.baidu.com/view/d2cc390bbb68a98271fefa37.html

    27.http://www.cse.anl.gov/%5C/cees/index.html

    28.Rahman, Ismail Ab, and Vejayakumaran Padavettan. "Synthesis of silica nanoparticles by
    sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review." Journal of Nanomaterials (2012)

    29.Stöber, Werner, Arthur Fink, and Ernst Bohn. "Controlled growth of monodisperse silica spheres in the micron size range." Journal of colloid and interface science 26.1 (1968)

    30.Liu, Mei-Pin, et al. "Facile preparation of silicon hollow spheres and their use in electrochemical capacitive energy storage." Chem. Commun. 48.41 (2012):
    4950-4952.

    31.Kim, Won-Sik, et al. "Scalable synthesis of silicon nanosheets from sand as an anode for Li-ion batteries." Nanoscale 6.8 (2014): 4297-4302.

    32.Hong, Inchul, Bruno Scrosati, and Fausto Croce. "Mesoporous, Si/C composite anode for Li battery obtained by ‘magnesium-thermal’reduction process." Solid State Ionics 232 (2013): 24-28.

    33.Hong, Inchul, Bruno Scrosati, and Fausto Croce. "Mesoporous, Si/C composite anode for Li battery obtained by ‘magnesium-thermal’reduction process." Solid State Ionics 232 (2013): 24-28.

    34.Prabriputaloong, K., and M. R. Piggott. "Reduction of SiO2 by molten Al."Journal of the American Ceramic Society 56.4 (1973): 184-185.

    35.A simulation study on the direct carbothermal reduction of SiO2 for Si metal

    36.Cho, Sung Ki, Fu-Ren F. Fan, and Allen J. Bard. "Formation of a silicon layer by electroreduction of SiO 2 nanoparticles in CaCl 2 molten salt."Electrochimica Acta 65 (2012): 57-63.
    37.Bao, Zhihao, et al. "Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas." Nature 446.7132 (2007): 172-175.

    38.Nadiradze, Archil, et al. "Thermodynamic Probability of Realization of the Process of Silicon Dioxide Reduction by Magnesium at High Temperatures."Bull. Georg. Natl. Acad. Sci 3.2 (2009).

    39.Yoo, Jung‐Keun, et al. "Scalable fabrication of silicon nanotubes and their application to energy storage." Advanced Materials 24.40 (2012): 5452-5456.

    40.Hong, Inchul, Bruno Scrosati, and Fausto Croce. "Mesoporous, Si/C composite anode for Li battery obtained by ‘magnesium-thermal’reduction process." Solid State Ionics 232 (2013): 24-28.

    41.Yim, Chae-Ho, Fabrice M. Courtel, and Yaser Abu-Lebdeh. "A high capacity silicon–graphite composite as anode for lithium-ion batteries using low content amorphous silicon and compatible binders." Journal of Materials Chemistry A1.28 (2013): 8234-8243.

    42.Li, Jing, and J. R. Dahn. "An in situ X-ray diffraction study of the reaction of Li with crystalline Si." Journal of The Electrochemical Society 154.3 (2007): A156-A161.

    43.Chattopadhyay, Sudeshna, et al. "In situ X-ray study of the solid electrolyte interphase (sei) formation on graphene as a model Li-ion battery anode."Chemistry of Materials 24.15 (2012): 3038-3043.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE