簡易檢索 / 詳目顯示

研究生: 劉勤仁
Liu, Chi-Ren
論文名稱: 合成聚苯醚及高分子合膠的應用
Synthesis of poly(phenylene oxide)s for using in polymer blends.
指導教授: 堀江正樹
Masaki Horie
口試委員: 蘇安仲
Su, An-Chung
游進陽
Yu, Chin-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 57
中文關鍵詞: 聚苯醚
外文關鍵詞: poly(phenylene oxide)s
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚苯醚由單體2,6雙甲基酚在含胺銅錯合物和氧氣環境下聚合而成。調整不同的反應時間、溫度、含胺銅觸媒、溶劑…等得到最佳化反應條件。產物由核磁共振光譜 (氫譜) 和凝膠滲透層析儀加以鑑定。用含雙丁基胺的銅觸媒和共溶劑系統(甲醇:甲苯=9:1)在30度C下執行氧化聚合可得高立體選擇性、高產率 (81%)、低數量平均分子量(3100)的聚苯醚。此外,未改質和改質功能化的聚苯醚將用於高分子合膠和電子材料方面的應用(印刷電路板)。具丙烯基側鍊的聚苯醚由單體2,6雙甲基酚和2-丙烯基-6-甲基酚在含雙丁基胺的銅觸媒催化下30度C,4小時氧化聚合而得(產率達81%、數量平均分子量為7000)。丙烯基末端改質聚苯醚由氯丙烯和聚苯醚喊應15小時改質而成 (產率達86%、數量平均分子量為8800)。最後含雙氫氧官能基之聚苯醚用類似於丙烯基側鍊聚苯醚的合成方法反應聚合7小時而得(產率達56%、數量平均分子量為6100)。藉熱重分析儀、微分掃描熱卡計和掃描式電子顯微鏡可用於以上4種高分子的熱分析及型態分析。聚苯醚(和聚丙烯晴-丁二烯-苯乙烯的)合膠的機械性質由抗拉伸強度儀測定之。由實驗結果而得,最佳高分子合膠由分子量3100的聚苯醚(9.1%)和聚丙烯晴-丁二烯-苯乙烯混鍊製成。其玻璃轉換溫度達111.02度C且抗拉伸強度為408(kg/cm2)。另外,含膠連的官能基的聚苯醚具有低的介電常數(2.87)和介電消散值(<0.01)將被用於印刷電路板。


    Poly(phenylene oxide)s (PPOs) were synthesized by oxidative polymerization of 2,6-dimethylphenol (2,6-DMP) catalyzed by copper-amine complexes in the presence of oxygen gas. Reaction conditions were optimized using various amine-contained copper complexes and changing solvents, temperature, and reaction time. Obtained polymers were characterized by GPC and 1H NMR spectroscopy. Currently, the best condition was found for the polymerization using Cu-DBA (dibutylamine) as a catalyst in co-solvent system (Methanol and toluene = 9:1) at 30 ºC for 4 hours affording high regioregularity, yield (81%) with number-average molecular weight (Mn) of 3100. In addition to unmodified PPOs, functional PPOs were synthesized for polymer blend and electric application (printed circuit board). PPOs with allyl side chain (AllylPPO-SC) was obtained by adding 2,6-DMP and 2-allyl-6-methylphenol in oxidative polymerization in the presence of DBA at 30 oC for 4hr in 81% yield with Mn of 7000. On the other hand, PPOs with allyl chain on end group (AllylPPO-EG) were obtained by end-capping reaction of PPO in the presence of allyl chloride for 15 hours. The yield of AllylPPO-EG were reached to 86% with Mn of 8800. Finally PPOs with bihydroxide groups (BispPPO) were obtained by similar way of AllylPPO-SC at 30 oC for 7 hours in 56% yield with Mn of 6100. Thermal properties and morphology study of synthesized polymers were investigated by TGA, DSC, and SEM analyses. PPOs blend (with acrylonitrile-butadiene-styrene (ABS)) in various content of PPO were measured by tensile strength instrument. The best blend system for maintaining the high Tg (111.02 oC) and high tensile strength (408 kg/cm2) is ABS/PPO-3 (10 phr). Both of crosslinkable PPOs (AllylPPO-SC and BispPPO) which would be used in printed circuit board have low dielectric constant (Dk = 2.87and 2.87) and dielectric dissipation (Df = 0.0029 and 0.0052).

    Contents ABSTRACT I 中文摘要 III ACKNOWLEDGEMENT IV TABLE OF ABBREVIATIONS V CHAPTER 1. INTRODUCTION AND AIMS. 1 1.1 ENGINEERING PLASTICS. 1 1.2 POLY(PHENYLENE OXIDE)S. 4 1.2.1 Introduction of PPO. 4 1.2.2 Reaction mechanism of PPO. 5 1.2.3 PPO synthesis in organic solvent. 10 1.2.4 PPO synthesis in water system. 12 1.2.5 Functionalization of PPO. 13 1.2.6 PPO in polymer blend. 14 1.3 PRINCIPLES OF MEASUREMENTS. 16 1.3.1 Inflammability tests. 16 1.3.2 Tensile test. 16 1.3.3 Dielectric constant tests. 17 1.4 PURPOSE OF THIS WORK. 18 1.5 REFERENCE. 24 CHAPTER 2. SYNTHESIS AND CHARACTERIZATION OF POLY(PHENYLENE OXIDE)S 26 2.1 SYNTHESIS OF POLYMERS 26 2.1.1 Polymerization of 2,6-dimethylphenol (2,6-DMP). 26 2.1.2 Synthesis of functionalized PPO on side chain. 31 2.1.3 Synthesis of functionalized PPOs on one-end group. 33 2.1.4 Synthesis of functionalized PPOs on two-end groups. 34 2.2 THERMAL, MECHANICAL AND INFLAMMABLE PROPERTY OF POLYMER ALLOYS (TGA, DSC, TENSILE STRENGTH, UL-94 AND SEM). 36 2.3 CONCLUSION. 51 CHAPTER 3. EXPERIMENTAL SECTION 52 3.1 MATERIALS. 52 3.2 GENERAL MEASUREMENTS. 52 3.3 GENERAL SYNTHESIS. 54 3.3.1 Synthesis of 2,6-PPO synthesis. 54 3.3.2 Synthesis of AllylPPO-SC. 54 3.3.3 Synthesis of AllylPPO-EG. 55 3.3.4 Synthesis of bispPPO. 55 3.4 REFERENCE. 57   List of Schemes, Figures and Table FIGURE 1 1. MARKET-LED DIAGRAM. 3 SCHEME 1 1. PROPOSED REACTION MECHANISMS OF POLYMERIZATION OF 2,6-DMP. 6 SCHEME 1 2. PROPOSED REACTION MECHANISM OF POLYMERIZATION OF 2,6-DMP. 7 SCHEME 1 3. PROPOSED MECHANISM FOR THE CONTROL OF PHENOXY RADICAL COUPLING BY OXIDATION CATALYST. 8 SCHEME 1 4. PREPARATION OF WELL CONTROLLED 2,6-PPO. 10 SCHEME 1 5. OXIDATIVE POLYMERIZATION OF 2,6-DMP BY CUBR IN THE PRESENCE OF PYRIDINE IN NITROBENZENE. 10 SCHEME 1 6. OXIDATIVE POLYMERIZATION OF 2,6-DMP BY CUCL2 IN THE PRESENCE OF 2,6-DIPHENYL-PYTRIDINE IN TOLUENE. 11 SCHEME 1 7. OXIDATIVE POLYMERIZATION OF 2,5-DMP BY CUCL IN THE PRESENCE OF MESOPOROUS INTERIOR IN DICHLOROBENZENE. 11 FIGURE 1 2. SCHEMATIC IMAGE OF PPE PRODUCTION PROCESS. 12 SCHEME 1 8. OXIDATIVE POLYMERIZATION OF 2,6-DMP IN WATER. 13 FIGURE 1 3. DECOMPOSITION OF POLYMER CHAINS OF PPO TO REDISTRIBUTE IN TO HOST POLYMER. 19 SCHEME 1 9. SYNTHESIS OF FUNCTIONALIZED PPO. 19 FIGURE 1 4. SCHEMATIC IMAGE OF DISPERSION OF SMALL MOLECULE WEIGHT PPO IN ABS. 21 FIGURE 1 5. SCHEMATIC IMAGES OF CROSSLINKING BETWEEN ALLYLPPO AND ABS. 22 FIGURE 1 6. POSSIBLE CROSSLINKING REACTIONS BETWEEN ALLYL GROUPS AND BUTADIENES. 22 FIGURE 1 7. STRUCTURE OF PRINTED CIRCUIT BOARD (PCB). 23 SCHEME 2 1. POLYMERIZATION OF 2,6-DMP. 26 TABLE 2 1. EFFECT OF LIGANDS USE IN OXIDATIVE POLYMERIZATION.A 27 TABLE 2 2. EFFECT OF SOLVENTS IN OXIDATIVE POLYMERIZATION.A 28 TABLE 2 3. LARGE-SCALE SYNTHESIS OF 2,6-PPO IN CO-SOLVENT SYSTEMSA. 28 FIGURE 2 1. 1H NMR SPECTRUM (CDCL3) OF POLY(2,6-DIMETHYLPEHNOL). POLYMERIZATION CONDITION: CU(I)BR CATALYST IN THE PRESENCE OF DBA LIGAND IN TOLUENE AT 30 °C FOR 4HR (TABLE 2-3 ENTRY 1). * H2O **CHCL3 30 FIGURE 2 2. 1H NMR SPECTRUM (CDCL3) OF POLY(2,6-DIMETHYLPEHNOL). POLYMERIZATION CONDITION: CU(I)BR CATALYST IN THE PRESENCE OF DBA LIGAND IN TOLUENE AT 30 °C FOR 20MIN (TABLE 2-3 ENTRY 2). * H2O **CHCL3 30 SCHEME 2 2. SYNTHESIS OF ALLYLPPO-SC. 32 FIGURE 2 3. 1H NMR SPECTRUM (CDCL3) OF ALLYLPPO-SC. POLYMERIZATION CONDITION: CU(I)BR CATALYST IN THE PRESENCE OF DBA LIGAND IN TOLUENE AT 30 °C FOR 4HR. * H2O **CHCL3 32 SCHEME 2 3. SYNTHESIS OF ALLYLPPO-EG. 33 FIGURE 2 4. 1H NMR SPECTRUM (CDCL3) OF ALLYLPPO-EG. 34 SCHEME 2 4.SYNTHESIS OF BISPPPO. 35 FIGURE 2 5 1H NMR SPECTRUM (CDCL3) OF BISP-PPO. POLYMERIZATION CONDITION: CU(I)BR CATALYST IN THE PRESENCE OF DBA LIGAND IN TOLUENE AT 30 °C FOR 4HR (TABLE 2-3 ENTRY 2). * H2O **CHCL3 35 FIGURE 2 6. SYNTHESIZED PPOS AND THEIR APPLICATIONS. 37 TABLE 2 4. TENSILE STRENGTH AND THERMAL STABILITY OF MATERIALS. 38 FIGURE 2 7. EFFECT OF PPO (PPO-C, PPO-7 AND PPO-3) ON THE TENSILE MODULUS OF ABS/PPO COMPOSITES. 40 FIGURE 2 8. EFFECT OF ALLYLPPO (PPO-C, PPO-7 AND PPO-3) ON THE TENSILE MODULUS OF ABS/ALLYLPPO COMPOSITES. 40 FIGURE 2 9. 1H NMR SPECTRA (CDCL3) OF ABS, 2,6-PPO, AND 2,6-PPO/ABS BLEND PRODUCED BY EXTRUDER. 41 FIGURE 2 10. THE CHANGES OF IR SPECTRUM BY TEMPERATURE. 43 FIGURE 2 11. THE CHANGES OF AND NMR SPECTRUM BY ALLYLPPO CONTENT. 43 FIGURE 2 12. SEM IMAGES OF ABS AND ABS/PPO-C BLEND. 45 FIGURE 2 13. SEM IMAGES OF ABS/PPO-7 BLEND. 46 FIGURE 2 14. SEM IMAGES OF ABS/PPO-SC BLEND. 47 FIGURE 2 15. SEM IMAGES OF ABS/PPO-EG BLEND. 48 TABLE 2 5. MEASUREMENT OF INFLAMMABILITY BY UL-94A. 49 TABLE 2 6. ELECTRIC PROPERTIES OF CROSSLINKABLE PPOS. 50 FIGURE 3 1. PHOTOS OF UL-94 INSTRUMENT. 53 FIGURE 3 2. PHOTOS OF EXTRUDER INSTRUMENT. 54

    [1] M. Kutz, Applied Plastics Engineering Handbook: Processing and Materials, 1st ed., William Andrew, USA, 2011.
    [2] M. F. Ashby, Engineering Materials and Processes Desk Reference, Bulterworth Heinemann, UK, 2009.
    [3] R. J. Crawford, Plastics Engineering, Bulterworth Heinemann, Oxfard, 1987.
    [4] T. A. Osswald, Polymer Processing Fundamentals, Carl Hanser Verlag, Munich, 1998.
    [5] R. J. Crawford, Plastics Engineering, 2nd ed, New York, 1987.
    [6] C. A. Harper, E. M. Petrie, Plastics Materials and Processes: A Concise Encyclopedia, John Wiley, Canada, 2003.
    [7] J. K. Fink, High Performance Polymers, William Andrew, USA, 2008.
    [8] A. S. Hay, H.S. Blanchard, G. F. Endres, J. W. Eustance, J. Am. Chem. Soc., 1959,81, 6335.
    [9] H. Higashimura, M. Kubota, A. Shiga, K. Fujisawa, Y. Moro-oka, H. Uyama, S. Kobayashi, Macromolecules, 2000, 33, 6.
    [10] S. Kobayashia, H. Higashimura, Prog. Polym. Sci., 2003, 28, 1015-1048.
    [11] S. L. Cosgrove, W. A. Waters, J. Chem. Soc., 1951, 388.
    [12] C. G . Haynes, A. H. Turner, W. A. Waters, J. Chem. Soc., 1956, 2823.
    [13] G. F. Endres, A. S. Hay, J. W. Eustance, J. Org. Chem., 1963, 28, 1300.
    [14] E. Tsuchida, H. Nishide, T. Nishiyama, Makromol. Chem., 1975, 176, 1349.
    [15] H. R. Kricheldorf, G. Schwarz, Macromol. Rapid Commun., 2003, 24, 359.
    [16] W. Koch, W. Risse, W. Heitz, Makromol. Chem., Suppl., 1985, 12, 105.
    [17] H. Higashimura, K. Fujisawa, Y. Moro-oka, M. Kubota, A. Shiga, A. Terahara, H. Uyama, S. Kobayashi, J. Am. Chem. Soc., 1998, 120, 8529.
    [18] H. Higashimura, K. Fujisawa, Y. Moro-oka, S. Namekawa, M. Kubota, A. Shiga, H. Uyama, S. Kobayashi, Macromol. Rapid Commun., 2000, 21, 1121.
    [19] Y. Shibasaki, M. Nakamura, R. Ishimaru, J. N. Kondo, K. Domen, M. Ueda, Macromolecules, 2004, 37, 9657.
    [20] Y. Shibasaki, Y. Suzuki, M. Ueda, Macromolecules, 2007, 40, 5322.
    [21] K. Saito, T. Masuyama, H. Nishide, Green Chemistry, 2003, 5, 535–538.
    [22] K. Saito, T. Tago, T. Masuyama, H. Nishide, Angew. Chem. Int. Ed., 2004, 43, 730-733.
    [23] K. E. Holoch, B. J. Van sorge, US Patent, 1968, 3.378.228.
    [24] S. H. I. Chao, Polym bull, 1987, 17,397.
    [25] S. H. I. Chao, Polym bull, 1987, 18,131.
    [26] K. Mitulla and J. Hambrecht, et al, US Patent, 1988, 4, 743, 661.
    [27] Cabasso and Israel, et al., Patent, 1978, 4,073,754.
    [28] S. T. Milner, H. W. Xi, Journal of Rheology, 1996, 40, 663-87.
    [29] D. R. Paul, S. Newman, Polymer blends. 1st ed., vol. 2. New York: Academic
    Press, 1978.
    [30] K. C. Chiou, F. C. Chang, and Y. W. Mai, J. Polym. Res., 2001, 8, 17-26.
    [31] T. J. Lee, Y. D. Fang, W. G. Yuan, K. M. Wie, M. Liang, Polymer, 2007,48, 734-742.
    [32] M. Horie, I. Yamaguchi, T. Yamamoto, Macromolecules, 2006, 39, 22.
    [33] H. Wu, Z. Su, A. Takahara, Soft. Matter., 2011, 7, 1868–1873.
    [34] H. J. Hwang, S. W. Hsu and C. S. Wang, J. Macromol. Sci. Chem., 2008, 45, 1049
    [35] C. Auschra, R. Stadler, Macromolecules, 1993, 26, 6364-77.
    [36] A. Gottschalk, K. Muhlbach, F. Seitz, R. Stadler, C. Auschra, Macromolecular Symposia, 1994, 83, 127-46.
    [37] R. M. Ho, Y. W. Chiang, Macromolecules, 2002, 35, 1299-1306.
    [38] B. Pourdeyhimi, Imaging and Image Analysis Applications for Plastics, Plastic Design Library, 1999.
    [39] T. S. Grant, R. L. Jalbert, US Patent, 1989, 4.826.933.
    [1] A. Camus., M. S. Garozzo., N. Marsich., M. Mari., J. Mol. Catal., 1996, 112, 353.
    [2] F. J. Viersen., J. Renkema., G. Challa., J. Reedijk., J. Polymer Sci. A: Polymer Chem., 1992, 30, 901.
    [3] F.J. Viersen., G. Challa., J. Reedijk., Polymer, 1990, 31, 1368.
    [4] R. Ikeda., J. Sugihara., H. Uyama., S. Kobayashi., Macromolecules, 1996, 29, 8702-8705.
    [5] T. Fukuhara., Y. Shibasaki., S. Ando., M. Ueda., Polymer, 2004, 45, 843–847.
    [6] C. H. Lee., S. K. Lee., S. W. Kang., S. H. Yun., J. H. Kim., S. Chom., J. Appl. Polym. Sci., 1999, Vol. 73, 841–852.
    [7] T. J. Lee., Y. D. Fang., W. G. Yuan., K. M. Wei., M. Liang., Polymer, 2007, 48, 734-742.
    [8] R. M. Ho., Y. W. Chiang., Macromolecules, 2002, 35, 1299-1306.
    [9] F. K. Li., R. C. Larock., J. Polym. Sci., Part B: Polym. Phys., 2001, 39, 60-77.
    [10] B. E. Tiganisa., L. S. Burna., P. Davisa., A. J. Hillb., Polymer Degradation and Stability, 2002, 76, 425–434

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE