簡易檢索 / 詳目顯示

研究生: 高慰祖
論文名稱: 非線性橢圓方程週期解路徑之分歧與延拓
指導教授: 簡國清教授
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2003
畢業學年度: 92
語文別: 中文
論文頁數: 60
中文關鍵詞: 打靶法Crank-Nicolson法隱函數定理虛擬弧長延拓法多重週期解分歧圖
外文關鍵詞: Shooting method, Crank-Nicolson's method, Implicit function theorem, Pseudo-arclength continuation method, Multiple period solution
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要在探討非線性橢圓方程的多重週期解。欲求並延拓非線性偏微分方程組之週期解是一種很困難的工作,本文提供一種演算法來求整個解路徑,並延拓隨著一個參數變動的非線性偏微分方程組之週期解,我們稱之為虛擬弧長延拓法。我們將虛擬弧長延拓法應用在非線性橢圓方程式上,而週期解路徑之虛擬弧長延拓法是基於打靶法、牛頓法、Crank-Nicolson法、猜測及解法及隱函數定理等數值方法,且我們將利用其來探討非線性橢圓方程式週期解路徑。


    This paper’s main purpose is to confer the multiple period solution of the nonlinear elliptic equation. Secondly, It is this paper’s aim to solve and continue the period solution of partial differential equations. This paper
    will provide the method to calculate whole solution paths and continue the period solution of partial differential equations which variate a parameter.
    We call this is the pseudo- arclength continuation method. It is applied to the nonlinear elliptic equation with the pseudo-arclength continuation method, and the pseudo-arclength continu- ation method of the period solution paths on the basis of numerical methods of shooting method、Newton’s method、Crank-Nicolson’s method、predictor-solver and implicit function theorem. These solutions will be used to confer the period solution paths of the non-linear elliptic equation.

    第一章 緒論                      1 第二章 分歧理論與虛擬弧長延拓法            4 2.1 分歧問題 ……………………………………………………  4 2.2 分歧理論 ……………………………………………………  6 2.3 局部延拓法 …………………………………………………  8 2.3.1 預測法 ………………………………………………   9 2.3.2 解法 …………………………………………………   10 2.4 虛擬弧長延拓法 …………………………………………… 11 第三章 探討之問題                   15 3.1 uxx項的離散 ………………………………………………… 16 3.2 初始值問題解法 …………………………………………… 17 3.3 週期解之求法 ……………………………………………… 20 3.4 虛擬弧長延拓法求解路徑 ………………………………… 24 第四章 數值實驗                    29 4.1 實驗4.1 ……………………………………………………  30 4.2 實驗4.2 ……………………………………………………  36 4.3 實驗4.3 ……………………………………………………  42 4.4 實驗4.4 ……………………………………………………  48 第五章 結論                      54 參考文獻                        55

    [1] Allgower,E.L. and Chien,C.S., Continuation and local perturbation for multiple bifurcation, SIAM J. SCI. STAT. Comput., 7, pp.1265- 1281,(1986).
    [2] Aselone,P.M. and Moore,R.H., An Extension of the Newton-Kantorovich Method for Sloving Nonlinear Equations with An Application to Elasticity. J. Math. Anal. l3, pp.476-501,(1966).
    [3] Atkinson,K.E., The numerical solution of bifurcation problems, SIAM J. Numer. Anal., 14(4), pp.584-599,(1977).
    [4] Bauer,L., Reiss,E.L., and Keller,H.B., Axisymmetric Bucking of Hollow Spheres and hemispheres, Comm. Pure Appl. Math., 23, pp. 529-568,(1970).
    [5] Brezzi,F., Rappaz,J. and Raviart,P.A., Finite dimensional approximation of a bifurcation problems, Numer. Math., 36, pp.1-25,(1980).
    [6] Brown,K.J., Ibrahim,M.M.A. and Shivaji,R., S-Shaped bifurcation curves, Nonlinear Analysis, T.M.A, 5, pp.475-486,(1981).
    [7] Castro,A. and Shivaji,R., Uniqueness of positive solution for a class of elliptic boundary value problems, Proc. R. Soc. Edinb. 98A, pp.267-269,(1984).
    [8] Choi,Y.S., Jen,K,C.,(簡國清) and McKenna,P.J., The Structure of the Solution Set for Periodic Oscillations in a Suspension Bridge Model, IMA J. Appl. Math., 47, pp.283-306,(1991).
    [9] Coron,J.M., Periodic Solutions of a Nonlinear Wave Equation without Asumptions of Monotonicity. Math. Ann., 262, pp.273-285,(1983).
    [10] Crandall,M.G., An Introduction to Constructive Aspects of Bifurcation Theorem, edited by P.H. Rabinowitz, Academic Press, pp. 1-35,(1977).
    [11] Crandall,M.G. and Rabinowitz,P.H., Bifurcation from simple eigenvalue, J. Funct. Anal., 8, pp.321-340,(1971).
    [12] Crandall,M.G. and Rabinowitz,P.H., Bifurcation, Perturbation of Simple Eigenvalues, and Linearized Stability, Archive for rational Mech. Analysis,52, pp.161-180,(1973).
    [13] Crandall,M.G. and Rabinowitz,P.H., Mathematical Theory of Bifurcation, Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos,C. and Bessis,D., NATO Advanced Study Institute Series,(1979).
    [14] Iooss,G and Joseph,D.D., Elementary Stability and Bifurcation Theory, Spring-Verleg,(1989).
    [15] Jepson,A.D. and Spence,A., Numerical Methods for Bifurcation Problems, State of the Art in Numeriacl Analysis, edit bu A. Iserles, MJD Powell,(1987).
    [16] J.Glover, A.C.Lazer, and P.J.McKenna, Existence and Stability of Large Scale Nonlinear Oscillations in Suspension Bridges, Journal of Applied Mathematics and Physics Vol. 40,(1989).
    [17] Jen,K.C.(簡國清), The Stability and Convergence of a Crank- Nicolson Scheme for a Nonlinear Beam Vibration Equation, Chinese Journal of Mathematics, Vol.23, No.2, pp.97-121,(1995).
    [18] Kawada,T. and Hirai,A., Additional Mass Method-A New Approach to Suspension Bridge Rehabitation. Official Proceedings, 2nd Annual International Bridge Conference. Engineers of Society of Western Pennsylvania.(1985).
    [19] Keller,H.B., in " Recent Advances in Numerical Analysis ", Ed. by C. de Boor and G. H. Golub, Academic Press, New York, p 73,(1978).
    [20] Keller,H.B., Lectures on Numerical Methods in Bifurcation Problems, TATA Institute of Fundamental Research, Springer-Verlag, (1987).
    [21] Keller,H.B., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, Edited By Rabinowitz,P.H., Academic Press, pp.359-384,(1977).
    [22] Keller,H.B. and Langford,W.F., Iterations, perturbations and multiplicities for nonlinear bifurcation problems, Arch. Rational Mech. Anal.,48, pp.83-108,(l972).
    [23] Küpper,T., Mittelmann,H.D. and Weber,H.(eds.), Numerical Methods for Bifurcation Problems, Birkhäuser, Basel,(1984).
    [24] Kubiček,M. and Marek,M., Computational Methods in Bifurcation Theory and Dissipative Structures, Springer-Verlag, New York, (1983).
    [25] Lazer,A.C., and McKenna,P.J﹒Large Scale Oscillatory Behaviour in loaded asymmetric systems. Ann. Inst. Henri Poincaré: Analyse non lin’eaire 4(3), pp.243-274,(1987).
    [26] Lazer,A.C. and McKenna,P.J., A Symmetry Theorem and Applications to Nonlinear Partial Differential Equations. J. Diff. Eq. 72, pp. 95-106,(1988).
    [27] Lazer,A.C. and McKenna,P.J., Large Amplitude Periodic Oscillations in Suspension Bridge: Some New Connections with Nonlinear Analysis. SIAM Rev. 32, pp.537-578,(1989).
    [28] Lions,P.L., On the existence of positive solutions of semilinear elliptic equation,SIAM Rev., 24, pp.441-467,(1983).
    [29] Matsuaki,M., Experimental Study on Vortex Excited Oscillation of Suspension Bridge Towers. Trans. Jap. Soc. Civil Eng. l5, pp.172-174, (1985).
    [30] McKenna,P.J. and Walter W., Nonlinear Oscillations in a Suspension Bridge. Archive for Rational Mechanics and Analysis. 98(2), pp. 167-177,(1987).
    [31] McKenna,P.J. and Walter,W., On the Mulitiplicity of the Solution Set of Some Nonlinear Boundary Value Problems, Nonlinear Analysis 8, pp.893-907,(1984).
    [32] Patil,S.P., Response of Infinite Railroad Track to Vibrating Mass. J. Eng. Mech.114, pp.688-703,(1988).
    [33] Q-Heung Choi and Tacksun Jung, Periodic Solution of the Lazer- McKenna Suspension Bridge Equation, to be submitted,(1989).
    [34] Rheinboldt,W.C., Solution Fields of Nonlinear Equations and Continuation Methods, SIAM J. Numer. Anal., 17, pp.221-237,(1980).
    [35] Rheinboldt,W.C., Numerical Analysis of Parameterized Nonlinear Equations, Wiley(New York).
    [36] Scanlan,R.H., Airfoil and Bridge Deck Flutter Derivatives. Proc. Am. Soc. Civil Eng. Eng. Mech. Div. Em6, pp.1717-1737,(l971).
    [37] Scanlan,R.H., Developments in Low-speed Aeroelasticity in the Civil Engineering Field AIAA Journal 20, pp.839-844,(1982).
    [38] Shivaji,R., Remarks on an S-shaped bifurcation curve, J. Math. Analysis Applic., 111, pp.374-387,(1985).
    [39] Shivaji,R., Uniqueness result for a class of postione problems, Nonlinear Analysis: theory, methods and application, 7, pp.223-230, (1983).
    [40] Wacker,H.(ed),Continuation Methods, Academic Press, New York, (1978).
    [41] Wang,S.H., On S-Shaped Bifurcation curves, Nonlinear Analysis: theory, methods and application, 22, pp.1475-1485,(1994).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE