研究生: |
王郁鈞 Wang, Yu-Chun |
---|---|
論文名稱: |
氧空缺效應調控鐵電錫酸鋅奈米線之材料特性暨其壓光電子學之水分解應用 Effects of Oxygen Vacancy on Material Properties of Ferroelectric ZnSnO3 Nanowires and Its Application on Water Splitting through Piezo-phototronic Mechanism |
指導教授: |
吳志明
Wu, Jyh-Ming |
口試委員: |
杜正恭
Duh, Jenq-Gong 翁錦成 Weng, Chin-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 108 |
中文關鍵詞: | 錫酸鋅 、不對稱中心結構 、壓電光電子效應 、氧空缺 、降解 、光催化水分解 、產氫反應 |
外文關鍵詞: | ZnSnO3 nanowires, non-centrosymmetric structure |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用水熱法合成出屬於R3c空間群之錫酸鋅奈米線 (ZnSnO3 nanowires) 鐵電材料,其晶體結構具有特殊的非對稱中心特性,由於材料內部鋅原子和錫原子在z軸方向上相較於中心有著較大的偏移,故受到一外加應力時會沿著z軸方向產生自發性極化的現象,並誘導出高密度的電荷累積在材料的兩側,形成一個電位差,稱之為壓電勢。在Comsol模擬中明確指出奈米線在受到z軸方向的外力時所誘導出的壓電勢會高過於受到其他方向外力的情況。將錫酸鋅之壓電特性以及半導體特性耦合可以有效地提升光觸媒的效率。
目前為止少有文獻詳細探討氧空缺濃度對於錫酸鋅奈米線之光觸媒活性和壓電性質的影響,本實驗透過簡單快速的氫氣退火製程,在錫酸鋅奈米線的晶格中引入氧空缺,而氧缺陷的濃度會隨著退火時間的拉長而增加。進一步利用時間解析光致發光光譜 (TRPL) 發現在退火時間為0到3小時的區間內,光激發電子的存活時間會明顯的提高,代表電子電洞對再結合的機率降低,但是在經過4及5小時退火後電子的存活時間下降,此結果和光致發光光譜 (PL) 的結果相吻合;而極化對電場之作圖為一電滯曲線,符合錫酸鋅之鐵電特性,隨著退火時間的增長殘餘極化量的下降代表氧空缺的引入會破壞錫酸鋅之壓電表現,另外在霍爾量測當中發現經過3小時退火的錫酸鋅奈米線有著適當的載子濃度以及載子遷移率。在壓電輔助光電子的協同效應上,結果顯示最佳條件為經過3小時退火處理的錫酸鋅,其能夠在1小時內降解92 %的若丹明 (RhB) 染料,此外,產氫量在1小時內可以達到3882.5 mumol g-1 ,相較於未經退火處理的錫酸鋅提高了1.5倍,綜觀以上結果指出適當的氧空缺濃度可以降低錫酸鋅奈米線之光激發電子電洞對的複合藉此提高載子利用率,再透過壓電效應的輔助更進一步的提升觸媒效能,使其成為在再生能源以及永續產氫領域上的一個新選擇。
This work, the ferroelectric ZnSnO3 nanowires (NWs) with LiNbO3 structure were successfully synthesized through the hydrothermal method, which belongs to the R3c space group and possesses a non-centrosymmetric structure. In the comsol simulation, it clearly demonstrated that the piezoelectric potential of the nanowire induced by the external force in the z-axis direction is higher than the external force applied in other directions. Also, to improve the catalyst efficiency of ZnSnO3, the oxygen vacancies were introduced into the crystal lattice through a rapid and straightforward hydrogen annealing process, and the concentration of oxygen defects increases with the annealing time. According to the time-resolved photoluminescence (TRPL) results, the lifetime of carriers was increased in the annealing time interval from 0 to 3 hours and achieved 8.05 ns in the case of three hours annealing. After three hours annealing time, with increasing the annealing time, the lifetime was decreased. The piezoelectric properties of ZnSnO3 NWs can couple its semiconductor characteristics to effectively enhance the efficiency of photocatalyst in dye degradation and hydrogen production, which is called piezophototronic effect. By three hours post-annealed ZnSnO3 nanowires, the RhB dye degradation test illustrates that it can decompose 92 % dye molecules in an hour. Besides, the hydrogen evolution reaction reaches 3882.5 mumol g-1, which is 150 % times and 3500 % times higher than that of pristine ZnSnO3 NWs and blank control sample (without nanowires). The results indicate that oxygen vacancies play an important role in hydrogen evolution through the synergistic effect of piezoelectric characteristics and photocatalytic activity of LN-type ZnSnO3 NWs.
1. Fujishima, A. and K. Honda, Electrochemical photolysis of water at a semiconductor electrode. nature, 1972. 238(5358): p. 37.
2. Kadam, A.N., et al., Preparation of N doped TiO2 via microwave-assisted method and its photocatalytic activity for degradation of Malathion. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014. 133: p. 669-676.
3. Jiang, D., et al., Novel p–n heterojunction photocatalyst constructed by porous graphite-like C 3 N 4 and nanostructured BiOI: facile synthesis and enhanced photocatalytic activity. Dalton Transactions, 2013. 42(44): p. 15726-15734.
4. Huang, H., et al., Efficient degradation of benzene over LaVO4/TiO2 nanocrystalline heterojunction photocatalyst under visible light irradiation. Environmental science & technology, 2009. 43(11): p. 4164-4168.
5. Li, X., et al., Single‐atom Pt as co‐catalyst for enhanced photocatalytic H2 evolution. Advanced Materials, 2016. 28(12): p. 2427-2431.
6. Ou, G., et al., Tuning defects in oxides at room temperature by lithium reduction. Nature Communications, 2018. 9(1): p. 1302.
7. Gao, T., et al., Highly oriented BaTiO 3 film self-assembled using an interfacial strategy and its application as a flexible piezoelectric generator for wind energy harvesting. Journal of Materials Chemistry A, 2015. 3(18): p. 9965-9971.
8. Fu, Y.Q., et al., Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications. Progress in Materials Science, 2017. 89: p. 31-91.
9. Wu, N., Q. Wang, and X. Xie, Ocean wave energy harvesting with a piezoelectric coupled buoy structure. Applied Ocean Research, 2015. 50: p. 110-118.
10. Zhang, M., et al., A hybrid fibers based wearable fabric piezoelectric nanogenerator for energy harvesting application. Nano Energy, 2015. 13: p. 298-305.
11. Curie, J. and P. Curie, Development by pressure of polar electricity in hemihedral crystals with inclined faces. Bull. soc. min. de France, 1880. 3: p. 90.
12. Jaffe, B., Piezoelectric ceramics. Vol. 3. 2012: Elsevier.
13. Shrout, T.R. and S.J. Zhang, Lead-free piezoelectric ceramics: Alternatives for PZT? Journal of Electroceramics, 2007. 19(1): p. 113-126.
14. Takenaka, T., K.-i. Maruyama, and K. Sakata, (Bi1/2Na1/2) TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Japanese journal of applied physics, 1991. 30(9S): p. 2236.
15. Masimukku, S., et al., High efficient degradation of dye molecules by PDMS embedded abundant single-layer tungsten disulfide and their antibacterial performance. Nano Energy, 2018. 46: p. 338-346.
16. Wu, M.-H., et al., Ultrahigh efficient degradation activity of single- and few-layered MoSe2 nanoflowers in dark by piezo-catalyst effect. Nano Energy, 2017. 40: p. 369-375.
17. Ueberschlag, P., PVDF piezoelectric polymer. Sensor Review, 2001. 21(2): p. 118-126.
18. Koal, J.G., Polymer piezoelectric sensor of animal foot pressure. 1985, Google Patents.
19. Wu, J.M. and Y.N. Chen, The surface plasmon resonance effect on the enhancement of photodegradation activity by Au/ZnSn (OH) 6 nanocubes. Dalton Transactions, 2015. 44(37): p. 16294-16303.
20. Choi, Y.-Y., et al., Nano-sized Ag-inserted amorphous ZnSnO3 multilayer electrodes for cost-efficient inverted organic solar cells. Solar Energy Materials and Solar Cells, 2011. 95(7): p. 1615-1623.
21. Wu, J.M., et al., Ultrahigh sensitive piezotronic strain sensors based on a ZnSnO3 nanowire/microwire. Acs Nano, 2012. 6(5): p. 4369-4374.
22. Guo, R., et al., Synthesis of orthorhombic perovskite-type ZnSnO3 single-crystal nanoplates and their application in energy harvesting. ACS applied materials & interfaces, 2017. 9(9): p. 8271-8279.
23. Zhang, Z., et al., Rational tailoring of ZnSnO 3/TiO 2 heterojunctions with bioinspired surface wettability for high-performance humidity nanosensors. Nanoscale, 2015. 7(9): p. 4149-4155.
24. Qiu, J., et al., The growth mechanism and optical properties of ultralong ZnO nanorod arrays with a high aspect ratio by a preheating hydrothermal method. Nanotechnology, 2009. 20(15): p. 155603.
25. Lo, M.-K., S.-Y. Lee, and K.-S. Chang, Study of ZnSnO3-nanowire piezophotocatalyst using two-step hydrothermal synthesis. The Journal of Physical Chemistry C, 2015. 119(9): p. 5218-5224.
26. Wang, G., et al., Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting. Nano Letters, 2011. 11(7): p. 3026-3033.
27. Linsebigler, A.L., G. Lu, and J.T. Yates Jr, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical reviews, 1995. 95(3): p. 735-758.
28. Fujishima, A., X. Zhang, and D.A. Tryk, TiO2 photocatalysis and related surface phenomena. Surface science reports, 2008. 63(12): p. 515-582.
29. Ni, M., et al., A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews, 2007. 11(3): p. 401-425.
30. Anku, W.W., S.O. Oppong, and P.P. Govender, Bismuth-Based Nanoparticles as Photocatalytic Materials, in Bismuth-Advanced Applications and Defects Characterization. 2018, IntechOpen.
31. Liu, Z., et al., Plasmon Resonant Enhancement of Photocatalytic Water Splitting Under Visible Illumination. Nano Letters, 2011. 11(3): p. 1111-1116.
32. Wu, F., et al., Photocatalytic activity of Ag/TiO 2 nanotube arrays enhanced by surface plasmon resonance and application in hydrogen evolution by water splitting. Plasmonics, 2013. 8(2): p. 501-508.
33. Wang, H., et al., Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chemical Society Reviews, 2014. 43(15): p. 5234-5244.
34. Yu, Y., et al., A Bi/BiOCl heterojunction photocatalyst with enhanced electron–hole separation and excellent visible light photodegrading activity. Journal of Materials Chemistry A, 2014. 2(6): p. 1677-1681.
35. Moniz, S.J., et al., Visible-light driven heterojunction photocatalysts for water splitting–a critical review. Energy & Environmental Science, 2015. 8(3): p. 731-759.
36. Liu, Y., et al., Facile synthesis of Bi2MoO6/ZnSnO3 heterojunction with enhanced visible light photocatalytic degradation of methylene blue. Applied Surface Science, 2018. 430: p. 561-570.
37. Chen, X., et al., Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011. 331(6018): p. 746-750.
38. Li, M., et al., Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science, 2016. 354(6318): p. 1414-1419.
39. Sinhamahapatra, A., J.-P. Jeon, and J.-S. Yu, A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production. Energy & Environmental Science, 2015. 8(12): p. 3539-3544.
40. Nakajima, T., T. Tsuchiya, and T. Kumagai, Pulsed laser-induced oxygen deficiency at TiO2 surface: Anomalous structure and electrical transport properties. Journal of Solid State Chemistry, 2009. 182(9): p. 2560-2565.
41. Ahmad, H., et al., Hydrogen from photo-catalytic water splitting process: A review. Renewable and Sustainable Energy Reviews, 2015. 43: p. 599-610.
42. van de Krol, R., Y. Liang, and J. Schoonman, Solar hydrogen production with nanostructured metal oxides. Journal of Materials Chemistry, 2008. 18(20): p. 2311-2320.
43. Schneider, J. and D.W. Bahnemann, Undesired role of sacrificial reagents in photocatalysis. 2013, ACS Publications.
44. Galińska, A. and J. Walendziewski, Photocatalytic water splitting over Pt− TiO2 in the presence of sacrificial reagents. Energy & Fuels, 2005. 19(3): p. 1143-1147.
45. Wan, C. and C.R. Bowen, Multiscale-structuring of polyvinylidene fluoride for energy harvesting: the impact of molecular-, micro-and macro-structure. Journal of Materials Chemistry A, 2017. 5(7): p. 3091-3128.
46. Hahn, T. and H. Klapper, Crystallographic and noncrystallographic point groups. International Tables for Crystallography, 2006.
47. Jenus, P., ASSEMBLY OF MAGNETIC NANOPARTICLES AS A BASIS FOR THE PREPARATION OF HIERARCHICALLY STRUCTURED MATERIALS. 2014.
48. Starr, M.B. and X. Wang, Fundamental analysis of piezocatalysis process on the surfaces of strained piezoelectric materials. Scientific reports, 2013. 3: p. 2160.
49. Duerloo, K.-A.N., M.T. Ong, and E.J. Reed, Intrinsic piezoelectricity in two-dimensional materials. The Journal of Physical Chemistry Letters, 2012. 3(19): p. 2871-2876.
50. Wu, J.M., et al., Piezo‐Catalytic Effect on the Enhancement of the Ultra‐High Degradation Activity in the Dark by Single‐and Few‐Layers MoS2 Nanoflowers. Advanced Materials, 2016. 28(19): p. 3718-3725.
51. Xue, X., et al., Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires. Nano Energy, 2015. 13: p. 414-422.
52. Lo, V.C., Modeling the role of oxygen vacancy on ferroelectric properties in thin films. Journal of Applied Physics, 2002. 92(11): p. 6778-6786.
53. Mihara, T., H. Watanabe, and C.A.P. de Araujo, Characteristic change due to polarization fatigue of sol-gel ferroelectric Pb (Zr0. 4Ti0. 6) O3 thin-film capacitors. Japanese journal of applied physics, 1994. 33(9S): p. 5281.
54. Lo, V. and Z. Chen. Modeling the roles of oxygen vacancies in thin film ferroelectric memory. in ISAF 2000. Proceedings of the 2000 12th IEEE International Symposium on Applications of Ferroelectrics (IEEE Cat. No. 00CH37076). 2000. IEEE.
55. Dimos, D., et al., Photoinduced changes in the fatigue behavior of SrBi2Ta2O9 and Pb (Zr, Ti) O3 thin films. Journal of applied physics, 1996. 80(3): p. 1682-1687.
56. Maruno, S., et al., Effects of oxygen vacancy diffusion on leakage characteristics of Pt/(Ba0. 5Sr0. 5) TiO3/Pt capacitor. Japanese Journal of Applied Physics, 2000. 39(5A): p. L416.
57. Dong, S., et al., ZnSnO3 hollow nanospheres/reduced graphene oxide nanocomposites as high-performance photocatalysts for degradation of metronidazole. Applied Catalysis B: Environmental, 2014. 144: p. 386-393.
58. Huang, J., et al., Size-controlled synthesis of porous ZnSnO3 cubes and their gas-sensing and photocatalysis properties. Sensors and Actuators B: Chemical, 2012. 171: p. 572-579.
59. Kovacheva, D. and K. Petrov, Preparation of crystalline ZnSnO3 from Li2SnO3 by low-temperature ion exchange. Solid State Ionics, 1998. 109(3-4): p. 327-332.
60. Zhang, J., et al., First-principles study of the ferroelectric and nonlinear optical properties of the LiNbO3-type ZnSnO3. Physical Chemistry Chemical Physics, 2010. 12(32): p. 9197-9204.
61. Gou, H., F. Gao, and J. Zhang, Structural identification, electronic and optical properties of ZnSnO3: First principle calculations. Computational Materials Science, 2010. 49(3): p. 552-555.
62. Datta, A., et al., Evidence of Superior Ferroelectricity in Structurally Welded ZnSnO3 Nanowire Arrays. Small, 2014. 10(20): p. 4093-4099.
63. Roy, A., et al., First-principles calculations of Born effective charges and spontaneous polarization of ferroelectric bismuth titanate. Journal of Physics: Condensed Matter, 2010. 22(16): p. 165902.
64. Au - Halevy, R., et al., Electron Spin Resonance Micro-imaging of Live Species for Oxygen Mapping. JoVE, 2010(42): p. e2122.
65. Inc., R.t., FerroelectricCircuitEquations.
66. Inaguma, Y., M. Yoshida, and T. Katsumata, A polar oxide ZnSnO3 with a LiNbO3-type structure. Journal of the American Chemical Society, 2008. 130(21): p. 6704-6705.
67. Wang, Z.L. and J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006. 312(5771): p. 242-246.
68. Zhang, J., et al., Ferroelectric and nonlinear optical properties of the LiNbO3-type ZnGeO3 from first-principles study. Journal of Alloys and Compounds, 2012. 514: p. 113-119.
69. Smekal, W., W.S. Werner, and C.J. Powell, Simulation of electron spectra for surface analysis (SESSA): a novel software tool for quantitative Auger‐electron spectroscopy and X‐ray photoelectron spectroscopy. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, 2005. 37(11): p. 1059-1067.
70. Kim, G.H., et al., Inkjet-printed InGaZnO thin film transistor. Thin Solid Films, 2009. 517(14): p. 4007-4010.
71. Chen, M., et al., Surface characterization of transparent conductive oxide Al-doped ZnO films. Journal of Crystal Growth, 2000. 220(3): p. 254-262.
72. An, S., et al., SYNTHESIS, STRUCTURE, AND LUMINESCENCE PROPERTIES OF ZnSnO3 NANOWIRES. Nano, 2012. 07(02): p. 1250013.
73. Lei, F., et al., Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. Journal of the American Chemical Society, 2014. 136(19): p. 6826-6829.
74. Huang, G., et al., Strong blue emission from anodic alumina membranes with ordered nanopore array. Journal of applied physics, 2003. 93(1): p. 582-585.
75. Mukherjee, D., et al., Intrinsic anomalous ferroelectricity in vertically aligned LiNbO3-type ZnSnO3 hybrid nanoparticle-nanowire arrays. Applied Physics Letters, 2014. 105(21): p. 212903.
76. Zhou, Y., et al., Mechanisms of imprint effect on ferroelectric thin films. Journal of applied physics, 2005. 98(2): p. 024111.
77. Takechi, K., et al., Comparison of ultraviolet photo-field effects between hydrogenated amorphous silicon and amorphous InGaZnO4 thin-film transistors. Japanese Journal of Applied Physics, 2009. 48(1R): p. 010203.