研究生: |
林義庭 Lin, Yi-Ting |
---|---|
論文名稱: |
影響微網誌服務使用率之社會網路結構因素 Exploring the Influence of Social Network Structure Factors on the Frequency of Micro-blog Service Use |
指導教授: |
王俊程
Wang, Jyun-Cheng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 服務科學研究所 Institute of Service Science |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 43 |
中文關鍵詞: | 微網誌 、虛擬社群 、社會網路分析 |
外文關鍵詞: | micro-blog, virtual community, social network analysis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The huge trend of Web 2.0 makes people thinking about something never come to their mind. Micro-blogging is a relatively whole new social network site in the modern world and it facilitates enormous users to attend. The traffic of the website for marketing of company is crucial because it is the efficient way to make the marketing goal and expand the revenue. Therefore, this study attempts to figure out the factors that might be needed to consider keeping the users’ frequency of use. And then the traffic of the communication platform will keep, even grow up to the whole new level.
The data we analyzed comes from the micro-blog site called “Plurk” in this work. We apply social network analysis to find out the influent factors on users’ frequency of use. Eventually, the results illustrate that degree centrality, number of subgroups and users’ intention to stay have positively effects on users’ frequency of use. Companies could use the consequences to set up the marketing strategies or other managerial policies in this kind of communication platform.
在Web 2.0 的巨大浪潮之下,迫使人們開始思考之前從來沒有出現過的念頭,像微網誌這樣的全新社會網路社群吸引了為數眾多的使用者參與,產生了可觀的使用者流量。由於流量可以有效地達到行銷目的並且增加利潤,因此網站的使用者流量對於企業的行銷策略而言是個關鍵性的因素。所以本研究嘗試找尋影響使用者之使用頻率的考量因子,希望從中讓溝通平台的使用流量維持、甚至再創新高。
本研究的資料擷取自微網誌:噗浪 (Plurk),利用社會網路分析方法論探討使用者之使用頻率的影響因素,最終研究發現網路成員的程度中心性 (degree centrality)、網路的小群體的個數 (number of subgroups) 以及使用者的停留意願 (users’ intention to stay) 對於使用頻率有著正向的影響。企業可以利用此結果針對網路社群制訂合宜的行銷策略或是管理方針,藉以獲得最佳的市場成效。
Anderson, E., & Sullivan., M. W. (1993). The Antecedents and Consequences of Customer Satisfaction for Firms. Marketing Science, 12, 125-143.
Anderson, E. W. (1994). Cross-category Variation in Customer Satisfaction and Retention. Marketing Letters, 5, 19-30.
Batagelj, V., & Mrvar, A. (1998). Pajek - Program for Large Network Analysis. Connections, 21, 47-57.
Blake, B. F., & Neuendorf, K. A. (2003). Innovativeness and Variety of Internet Shopping. Internet Research: Electronic Networking, 13(3), 156–169.
Borgatti, S. (1998). What Is Social Network Analysis?
Borgatti, S. P., Everett, M. G., & Shirey, P. (1990). LS sets, lambda sets and other cohesive subsets. Social Networks, 12, 337–357.
Burnham, T. A., Frels, J. K., & Mahajan, V. (2003). Consumer Switching Costs: A Typology, Antecedents, and Consequences. Journal of The Academy of Marketing Science.
Ennew, C., Lockett, A., Blackman, I., & Holland, C. P. (2005). Competition in Internet Retail Markets: The Impact of Links on Web Site Traffic. Long Range Planning, 38(4), 359-372.
Fornell, C. (1992). A National Customer Satisfaction Barometer: The Swedish Experience. Marketing 56, 6-21.
Freeman, L. (1979). Centrality in Social Networks: Conceptual Clarification. Social Networks, 1(3), 215-239.
Guiltinan, J. P. (1989). A Classification of Switching Costs with Implications for Relationship Marketing. Chicago: American Marketing Association, 216-220.
Honeycutt, C., & Herring, S. C. (2009). Beyond Microblogging: Conversation and Collaboration via Twitter Proceedings of the 42nd Hawaii International Conference on System Sciences.
Java, A., Song, X., Finin, T., & Tseng, B. (2007). Why We Twitter: Understanding Microblogging Usage and Communities. International Conference on Knowledge Discovery and Data Mining, Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network analysis, 56-65.
Jones, M. A., Mothersbaugh, D. L., & Beatty, S. E. (2002). Why Customers Stay: Measuring The Underlying Dimensions of Services Switching Costs and Managing Their Differential Strategic Outcomes. Business Research 55, 441-450.
Katz, J. E., & Rice, R. E. (2002). Social consequences of internet use: Access involvement and interaction. Cambridge: MIT Press.
Klemperer, P. (1987). Markets with consumer switching costs. Quarterly Journal of Economics, 102, 375–394.
Klemperer, P. (1995). Competition When Consumers Have Switching Costs: An Overview With Applications to Industrial Organization, Macroeconomics, and International Trade. Review of Economic Studies, 62, 515-539.
Maruyama, G., & McGarvey, B. (1980). Evaluating Causal Models: An Application of Maximum-likelihood Analysis of Structural Equations. Psychological Bulletin, 87(3), 505–512.
McKenna, K. Y. A., Green, A. S., & Gleason, M. E. J. (2002). Relationship formation on the Internet: What's the big attraction? Journal of Social Issues, 58, 9–31.
Parks, M. R., & Floyd, K. (1996). Making Friends in Cyberspace. Journal of Communication, 46.
Ping, R. A. (1993). The Effects of Satisfaction and Structural Constraints on Retailer Exiting, Voice, Loyalty, Opportunism, and Neglect. Journal of Retailing, 69(3), 320-352.
Reingen, P. H., Foster, B. L., Jacqueline Johnson, B., & Seidman, S. B. (1984). Brand Congruence in Interpersonal Relations: A Social Network Analysis. The Journal of Consumer Research, 11(3), 771-783.
Sharma, N., & Patterson, P. G. (2000). Switching Costs, Alternative Attractiveness and Experience as Moderators of Relationship Commitment in Professional, Consumer Services. International Journal of Service Industry Management, 11(5), 470-490.
Wasserman, S., & Faust, K. (1994). Social Network Analysis: Methods and Applications. Cambridge Univ Press.
Whitten, D., & Wakefield, R. L. (2006). Measuring Switching Costs in IT Outsourcing Services. The Journal of Strategic Information Systems, 15(3), 219-248.
Wikipedia. (2010).
Wright, S. S. (1921). Correlation and Causation. Journal of Agricultural Research, 20, 557–585.
Zhao, D., & Rosson, M. B. (2009). How and Why People Twitter: The Role that Micro-blogging Plays in Informal Communication at Work. Conference on Supporting Group Work, Proceedings of the ACM 2009 international conference on Supporting group work table of contents, 243-252.
Zweig, D., & Webster, J. (2003). Personality as a Moderator of Monitoring Acceptance. Computers in Human Behavior, 19(4), 479–493.