簡易檢索 / 詳目顯示

研究生: 丁姮彣
Ting, Heng-Wen
論文名稱: 六角最密堆積金屬奈米晶體陣列 之製備、性質與應用研究
Fabrication, Properties and Applications of Hexagonal Close-Packed Metal Nanocrystal Arrays
指導教授: 陳力俊
Chen, Lih-Juann
蔡哲正
Tsai, Cho-Jen
口試委員: 陳力俊
蔡哲正
果尚志
鄭紹良
吳文偉
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 104
中文關鍵詞: 奈米晶體表面電漿子共振金屬奈米顆粒膠體粒子微影法表面增強型拉曼散射
外文關鍵詞: nanocrystal, localized surface plasmon resonance, metal nanoparticle, colloidal lithography, Surface enhanced Raman resonance
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文著重於大面積六角最密堆積金屬奈米晶體陣列的製程開發。金屬奈米晶體的結構鑑定、表面電漿子共振特性以及其在表面增強拉曼散射光譜上的應用,也在本論文中探討與研究。
    此種製作大面積、高密度六角最密堆積金屬(金、銀)奈米晶體陣列的製程,結合膠體粒子微影法與退火,成功利用表面能差異,使金屬薄膜形成金屬奈米晶體。此方法可藉由調控金屬薄膜的厚度與膠體粒子的尺寸,準確掌控金屬奈米晶體陣列中晶體的尺寸與中心距離。此外,可藉由適當的表面前處理與金屬鍍膜方法,製作出具有均勻的粒徑分佈的金屬奈米晶體陣列。表面前處理可改善金屬膜的均勻性與連續性,並將均勻金屬薄膜的厚度推降到四奈米,拓展了此製程對金屬奈米晶體尺寸的調變度。此製程製作出的金屬奈米晶體陣列具有面積大於30 × 40 μm2¬的單一排列順序之超晶格¬,並可利用轉印法成功將此金屬奈米晶體陣列從矽基板翻轉至可撓曲的基板上。除金屬奈米晶體外,亦可藉由調變退火氣氛、溫度與時間製作出不同的金屬/氧化物複合奈米結構(包含核殼結構與核/枝狀結構),並能掌控其結構與尺寸。此種不同的金屬/氧化物複合奈米結構的成長機制亦會在此論文中提出。
    針對量測出的金屬(金、銀)奈米晶體與金屬/氧化物複合奈米結構的表面電漿子共振特性,將會有系列性的探討與研究。此結果同時也展示出,可利用控制不同金屬的種類、成份、尺寸以及氧化物外殼的厚度,調變其表面電漿子共振特性。此外,以Mie theory為理論基礎的模擬,也會被用來計算金屬(金、銀)奈米晶體陣列的消散(包含吸收與散射)光譜。經過比較,實驗結果與模擬結果相當一致。顯示出此法對於金屬(金、銀)奈米晶體陣列的表面電漿子共振特性具有良好的控制能力。最後,我們也將製備出的金屬(金、銀)奈米晶體陣列做表面增強拉曼散射光譜的測試。結果顯示其具有良好的靈敏度與表面增強拉曼散射效應,可應用在未來利用表面增強拉曼散射特性的生物感測器上。
    總結以上,此論文中發展出低價且方便的製程,製作出具有尺寸、材料組成調變性的大面積六角最密堆積金屬奈米單晶晶體陣列與金屬/氧化物複合奈米結構陣列。可藉由改變其幾何條件與結構,調控其表面電漿子共振特性。其展現的良好的表面電漿子共振特性與表面增強拉曼散射特性,可將之應用在表面增強拉曼散射型的生物感測器以及表面電漿子光電元件上。


    A facile method to fabricate large-scaled hexagonal close-packed metal nanocrystal arrays has been developed. The characterization of metal nanocrystals, investigation of their localized surface plasmon resonance (LSPR) properties, and further utilization of the LSPR substrates onto surface enhanced Raman scattering (SERS) applications are studied.
    The facile method combining colloidal lithography and surface energy driven dewetting process was demonstrated successfully to fabricate large-area, high density, hexagonal close-packed, single crystalline metal (Au, Ag) nanocrystal arrays with controllable crystal size of tens of nanometers, center to center spacing and uniform size distribution. The large-area hexagonal close-packed metal (Au, Ag) nanocrystal arrays with various sizes and center-to-center spacing were prepared and manipulated by regulation of thickness of metal and size of colloidal spheres. Appropriate surface treatments and metal deposition method were shown to be critical for obtaining metal nanocrystal arrays with uniform size. The quality of metal thin films can be improved by surface treatments and uniform metal thin films with the thickness below 4 nm are achieved, extending the controllability over the size of nanocrystal. Larger than 30 × 40 μm2 single superlattice domain of Au nanocrystal arrays were formed on Si and can be transferred to flexible substrates, illustrating the versatility of this method to realize metal nanocrystal arrays on various substrates. In addition to metal nanocrystal arrays, multiple metal/oxide (core/shell and core/dendrite) nanostructure arrays are also successfully fabricated by this method. The good controllability over geometrical parameters and structures of metal/oxide nanostructure arrays by control of the annealing temperature, atmosphere and time is demonstrated and the growth mechanism is proposed.
    The LSPR responses of metal nanocrystal arrays and metal/oxide nanostructure arrays were systematically measured. The LSPR responses can be manipulated by changing the variety, size of metal nanocrystal and the thickness of oxide shell of metal/oxide nanostructures. Simulations of their extinction (including absorption and scattering) spectra based on Mie theory are conducted for comparison. The experimental results exhibited high consistency with simulation, implying the high controllability of LSPR wavelength can be achieved by this method. Surface enhanced Raman resonance (SERS) properties utilizing the LSPR substrates with metal (Au, Ag) nanocrystal arrays are also demonstrated. Good sensitivity and reproducibility make these LSPR substrates promising candidates for future LSPR based biosensors applications.
    This method provides an inexpensive and facile route to fabricate a large-scaled close-packed single crystalline metal nanocrystal array with controllable sizes compared to the e-beam lithography method for precise regulation of LSPR wavelength and light scattering cross sections. It exhibits excellent versatility and controllability to fabricate large-scaled metal nanocrystal array and metal/oxide nanostructurs arrays with various size, morphology and structures on different substrates. Single crystallinity and long-range order of metal nanocrystal array can be achieved to enhance LSPR performance and benefit directional propagation, which can lead to significant applications on surface-enhanced Raman scattering (SERS) based biosensors, nanoantennas and other plasmonic optoelectronics.

    Abstract I 摘要 III Acknowledgment V Contents VI Chapter 1 Introduction 1 1.1 Interactions of light with metal nanoparticles 1 1.1.1 Overview 1 1.1.2 Mie theory 2 1.2 Plasmonics and localized surface plasmon resonance (LSPR) 3 1.2.1 Plasmons and plasmonics 3 1.2.2 Localized surface plasmon resonance (LSPR) 4 1.2.3 Applications of LSPR 6 1.3 Surface enhanced Raman scattering 7 1.3.1. Raman scattering and Raman spectroscopy 7 1.3.2. Surface enhanced Raman scattering (SERS) 8 1.3.3. Shell-isolated nanoparticle-enhanced Raman spectroscopy 9 1.4 LSPR and SERS substrates 10 1.4.1. Requirements of LSPR and SERS substrates 10 1.4.2. Fabrication methods of LSPR and SERS substrates 11 1.5 Motivations and outline 12 Chapter 2 Experimental Section 14 2.2 Experimental methods 14 2.3 Experimental systems 15 2.3.1 Rapid thermal annealing system 15 2.3.2 Furnace setup 16 2.3.3 Scanning electron microscopy (SEM) 17 2.3.4 Sample preparation for transmission electron microscope (TEM) observation 18 2.3.5 Transmission electron microscopy 18 2.3.6 Light-scattering spectroscopy 19 2.3.7 Raman spectroscopy 19 Chapter 3 Fabrication of Large-area Hexagonal Close-packed Au Nanocrystal Arrays 20 3.1 Motivation 20 3.2 Experimental procedures 21 3.2.1. Arrangement of monolayer polystyrene (PS) sphere 22 3.2.2. Fabrication of SiO2 honeycomb cells 22 3.2.3. Formation of Au nanocrystals array on Si substrates 22 3.2.4. Transfer of metal nanocrystal arrays on Si substrates to flexible substrates 23 3.3 Results and discussion 23 3.3.1. Fabrication of Au nanocrystals array 23 3.3.2. Influencing factors of metal nanocrytal arrays formation 29 3.3.3. Transferring substrates of Au nanocrystal arrays 35 3.3.4. Large area single superlattice domain Au nanocrystal arrays 38 3.4 Conclusions 40 Chapter 4 LSPR Properties and Applications of Hexagonal Close-packed Au Nanocrystal Arrays 42 4.1 Motivation 42 4.2 Experimental procedures 43 4.2.1 Measurement of scattering spectrum of Au nanocrystal arrays 43 4.2.2 Simulation of scattering spectrum of Au nanocrystal arrays 44 4.2.3 Measurements of SERS spectrum 45 4.3 Results and discussion 46 4.3.1 Scattering spectrum of Au nanocrystal arrays 46 4.3.2 SERS applications of Au nanocrystal arrays 51 4.4 Conclusions 55 Chapter 5 Hexagonal Close-packed Ag Nanocrystal Arrays: Fabrications, Characterizations, LSPR Properties and Applications 57 5.1 Motivation 57 5.2 Experimental procedures 58 5.3 Results and discussion 59 5.3.1 Fabrication of Ag nanocrystals array 59 5.3.2 Fabrication of Au-Ag alloy nanocrystals array 64 5.3.3 Scattering spectra of Ag nanocrystal arrays 65 5.3.4 SERS applications of Ag nanocrystal arrays 69 5.4 Conclusions 70 Chapter 6 Fabrication and LSPR Properties of Multiple Au/SiOx Nanostructure Arrays 71 6.1 Motivation 71 6.2 Experimental procedures 72 6.3 Results and discussion 72 6.3.1 Fabrication of Au/SiOx nanostructure array 72 6.3.2 Scattering spectra of Au/SiOx nanostructure arrays 75 6.4 Conclusions 77 Chapter 7 Summary and Conclusions 79 Chapter 8 Future Prospects 81 8.1 Fabrication of metal/oxide/metal nanosphere arrays 81 8.2 LSPR enhanced photoluminescence and photoabsorption 83 References 86

    Chapter 1
    [1.1] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B, 2003, 107, 668-677.
    [1.2] D. D. Evanoff, Jr. and G. Chumanov, “Size-Controlled Synthesis of Nanoparticles. 2. Measurement of Extinction, Scattering, and Absorption Cross Sections,” J. Phys. Chem. B, 2004, 108, 13957-13962.
    [1.3] E. A. Coronado, E. R. Encinaa and F. D. Stefani, “Optical Properties of Metallic Nanoparticles: Manipulating Light, Heat and Forces at the Nanoscale” Nanoscale, 2011, 3, 4042-4059.
    [1.4] F. Flory, L. Escoubas, and G. Bergincc, “Optical Properties of Nanostructured Materials: a Review,” Journal of Nanophotonics, 2011, 5, 052502-1-20.
    [1.5] G. Mie, “Beitrage zer Optik truber Meiden speziell kolloidaler Metallosungen,” Ann. Phys., 1908, 25, 377-445.
    [1.6] M. Kerker, “The Scattering of Light and Other Electromagnetic Radiation,” Academic: New York, 1969.
    [1.7] C. F. Bohren and D. R. Huffman, “Absorption and Scattering of Light by Small Particles,” Wiley Interscience: New York, 1983.
    [1.8] G. C. Papavassiliou, “Optical Properties of Small Inorganic and Organis Metal Particles,” Prog. Solid St. Chem., 1980, 12, 185-271.
    [1.9] K. A. Willets and R. P. V. Duyne, “Localized Surface Plasmon Resonancepectroscopy and Sensing,” Annu. Rev. Phys. Chem., 2007, 58, 267-297.
    [1.10] W. A. Murray and W. L. Barnes, “Plasmonic Materials,” Adv. Mater., 2007, 19, 3771-3782.
    [1.11] N. J. Halas, “Plasmonics: An Emerging Field Fostered by Nano Letters,” Nano Lett., 2010, 10, 3816-3822.
    [1.12] C. F. Bohren and D. R. Huffman, “Absorption and Scattering of Light by Small Particles,” Wiley, New York, 1983.
    [1.13] M. A. Noginov1, G. Zhu1, A. M. Belgrave1, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong and U. Wiesner, “Demonstration of a Spaser-based Nanolaser,” Science, 2009, 460, 1110-1113.
    [1.14] Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-Plasmonic Absorber Structure for High Efficiency Amorphous Silicon Solar Cells,” Nano Lett., 2012, 12, 440-445.
    [1.15] H. Tan, R. Santbergen, A. H. M. Smets and M. Zeman, “Plasmonic Light Trapping in Thin-film Silicon Solar Cells with Improved Self-Assembled Silver Nanoparticles,” Nano Lett., 2012, 12, 4070-4076.
    [1.16] Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang and X. Duan, “Plasmon Resonance Enhanced Multicolour Photodetection by Grapheme,” Nature Comm., 2012, 2, 579-1-4.
    [1.17] H. Nakanishi1, K. J. M. Bishop, B. Kowalczyk, A. Nitzan, E. A. Weiss, K. V. Tretiakov, M. M. Apodaca, R. Klajn, J. F. Stoddart and B. A. Grzybowski, “Photoconductance and Inverse Photoconductance in Films of Functionalized Metal Nanoparticles,” Nature, 2009, 460, 371-375.
    [1.18] A. J. McQuillan, “The Discovery of Surface-enhanced Raman Scattering,“ Rec. R. Soc., 2009, 63, 105-109.
    [1.19] B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. V. Duyne, “SERS: Materials, Applications, and the Future,” Material Today, 2012, 15, 16-25.
    [1.20] C. L. Haynes, A. D. McFarland and R. P. V. Duyne, “Surface-enhanced Raman Scattering” Anal. Chem., 2005, 322, 339-346.
    [1.21] M. Fleischmann, P. J. Hendra and A. J. McQuillan, “Raman Spectra of Pyridine Adsorbed at a Silver Electrode,” Chem. Phys. Lett., 1974, 26, 163-166.
    [1.22] D. L. Jeanmaire and R. P. V. Duyne, “Surface Raman Electrochemistry. Part 1. Heterocyclic, Aromatic and Aliphatic amines Adsorbed on the Anodised Silver Electrode,” J. Electroanal. Chem., 1977, 84, 1-20.
    [1.23] M. G. Albrecht and J. A. Creighton, “Anomalously Intense Raman Spectra of Pyridine at a Silver Electrode,” J. Am. Chem. Soc., 1977, 99, 5215-5219.
    [1.24] J. R. Anema, J. F. Li, Z. L. Yang, B. Ren, and Z. Q. Tian, “Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy: Expanding the Versatility of Surface-Enhanced Raman Scattering,” Annu. Rev. Anal. Chem., 2011, 4, 129-150.
    [1.25] J. J. Chen, J. C. S. Wu, P. C. Wu and D. P. Tsai, “Improved Photocatalytic Activity of Shell-Isolated Plasmonic Photocatalyst Au@SiO2/TiO2 by Promoted LSPR” J. Phys. Chem. C, 2012, 116, 26535-26542.
    [1.26] V. Uzayisenga, X. D. Lin, L. M. Li, J. R. Anema, Z. L. Yang, Y. F. Huang, H. X. Lin, S. B. Li, J. F. Li and Z. Q. Tian, “Synthesis, Characterization, and 3D-FDTD Simulation of Ag@SiO2 Nanoparticles for Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy,” Langmuir, 2012, 28, 9140-9146.
    [1.27] J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. Lin Wang and Z. Q. Tian, “Shell-isolated Nanoparticle-enhanced Raman Spectroscopy,” Nature, 2010, 464, 392-395.
    [1.28] Q. Li, B. Lu, L. Zhang and C. Lu, “Synthesis and Stability Evaluation of Size-controlled Gold Nanoparticles via Nonionic Fluorosurfactant-assisted Hydrogen Peroxide Reduction,” J. Mater. Chem., 2012, 22, 13564-13570.
    [1.29] N. J. Halas, S. Lal, S. Link, W. S. Chang, D. Natelson, J. H. Hafner and P. Nordlander, “Plethora of Plasmonics from the Laboratory for Nanophotonics at Rice University,”Adv. Mater., 2012, 24, 4842-4877.
    [1.30] J. C. Hu, P. Y. Su, V. Lapeyronie, S. L. Cheng, M. Y. Lin and L. J. Chen, Self-Assembled Au Nanoparticle Superlattice via a Displacement Reaction,” J. Electron. Mater., 2004, 33, 1058-1063.
    [1.31] C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard and L. D. Negro, “Genetically Engineered Plasmonic Nanoarrays,” Nano Lett., 2012, 12, 2037-2044.
    [1.32] Fujita and T. Nishikawa, in New Perspectives in Biosensors Technology and Applications, (Eds: Pier Andrea Serra), InTech, 2011, Ch. 7.
    [1.33] W. W. Wu, K. C. Lu, C. W. Wang, H. Y. Hsieh, S. Y. Chen, Y. C. Chou, S. Y. Yu, L. J. Chen and K. N. Tu, “Growth of Multiple Metal/Semiconductor Nanoheterostructures through Point and Line Contact Reactions,” Nano Lett., 2010, 10, 3984-3989.
    [1.34] Y. H. Chen, W. S. Li, C. Y. Liu, C. Y. Wang, Y. C. Chang and L. J. Chen, “Three-dimensional Heterostructured ZnSe Nanoparticles/Si Wire Arrays with Enhanced Photodetection and Photocatalytic Performances,” J. Mater. Chem. C, 2013, 1, 1345-1351.
    [1.35] C. Y. Liu, W. S. Li, L. W. Chu, M. Y. Lu, C. J. Tsai and L. J. Chen, “An ordered Si Nanowire with NiSi2 Tip Arrays as Excellent Field Emitters,” Nanotechnology, 2011, 22, 055603-055609.
    [1.36] H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz and R. P. V. Duyne, “Plasmonic Properties of Copper Nanoparticles Fabricated by Nanosphere Lithography,” Nano Lett., 2007, 7, 1947-1952.
    [1.37] F. Xie, A. Centeno, M. R. Ryan, D. J. Riley and N. M. Alford, “Au Nanostructures by Colloidal Lithography: from Quenching to Extensive Fluorescence Enhancement,” J. Mater. Chem. B, 2013, 1, 536-543.
    [1.38] P. Y. Su, J. C. Hu, S. L. Cheng and L. J. Chen, “Self-assembled Hexagonal Au Particle Networks on Silicon from Au Nanoparticle Solution,” Appl. Phys. Lett., 2004, 84, 3480-3482.
    [1.39] P. Y. Su, M. Y. Lu, J. C. Hu, S. L. Cheng and L. J. Chen, “Growth of Light-emitting Silicate Nanowires on Individual Au Particles in Self-assembled Hexagonal Au Particle Networks,” Appl. Phys. Lett., 2005, 87, 163101-163103.
    [1.40] Y. Cui, J. Zhou, V. A. Tamma and W. Park, “Dynamic Tuning and Symmetry Lowering of Fano Resonance in Plasmonic Nanostructure,” ACS Nano, 2012, 6, 2385-2393.
    [1.41] A. Tao, P. Sinsermsuksakul and P. Yang, ”Tunable Plasmonic Lattices of Silver Nanocrystals, ” Nat. Nanotechnol., 2007, 2, 435-440.
    [1.42] C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics“, J. Phys. Chem. B, 2001, 105, 5599-5611.
    [1.43] G. V. Naik, V. M. Shalaev and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater., 2013, 25, 3264-3294.

    Chapter 3
    [3.1] Y. Sun and Y. Xia, “Shape-Controlled Synthesis of Gold and Silver Nanoparticles,” Science, 2002, 298, 2176-2179.
    [3.2] M. Eguchi, D. Mitsui, H. L. Wu, R. Sato and T. Teranishi, “Simple Reductant Concentration-Dependent Shape Control of Polyhedral Gold Nanoparticles and Their Plasmonic Properties,” Langmuir, 2012, 28, 9021-9026.
    [3.3] A. S. Barnard, X. M. Lin and L. A. Curtiss, “Equilibrium Morphology of Face-Centered Cubic Gold Nanoparticles >3 nm and the Shape Changes Induced by Temperature,” J. Phys. Chem. B, 2005, 109, 24465-24472.
    [3.4] Wulff, G. Z. Kristallogr. “Zeitschrift fur Krystallographie und Mineralogie,” Mineral., 1901, 34, 449-530.
    [3.5] K. Page, Th. Proffen, H. Terrones, M. Terrones, L. Lee, Y. Yang, S. Stemmer, R. Seshadri, and A. K. Cheetham, “Direct Observation of the Structure of Gold Nanoparticles by Total Scattering Powder Neutron Diffraction,” Chem. Phys. Lett., 2004, 393, 385-388.
    [3.6] B. Pauwels, G. V. Tendeloo, W. Bouwen, L. T. Kuhn, P. Lievens, H. Lei and M. Hou, “Low-energy-deposited Au Clusters Investigated by High-resolution Electron Microscopy and Molecular Dynamics Simulations,” Phys. Rev. B, 2000, 62, 10383-10393.

    Chapter 4
    [4.1] V. Mena, T. M. Sannomiya, T. L. G. Villanueva, V. Savu, J. Voros and J. Brugger, “High-Resolution Resistless Nanopatterning on Polymer and Flexible Substrates for Plasmonic Biosensing Using Stencil Masks,” ACS Nano, 2012, 6, 5474-5481.
    [4.2] P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phy. Rev. B, 1972, 6, 4370-4379.
    [4.3] N. H. Kim and K. Kim, “Surface-enhanced Resonance Raman Scattering of Rhodamine 6G on Pt Nanoaggregates,” J. Raman Spectrosc., 2005, 36, 623-628.
    [4.4] D. Pristinski, S. Tan, M. Erol, H. Du and S. Sukhishvili, “In situ SERS Study of Rhodamine 6G Adsorbed on Individually Immobilized Ag Nanoparticles,” J. Raman Spectrosc., 2006, 37, 762-770.
    [4.5] Amy M. Michaels, M. Nirmal, and L. E. Brus, “Surface Enhanced Raman Spectroscopy of Individual Rhodamine 6G Molecules on Large Ag Nanocrystals,” J. Am. Chem. Soc., 1999, 121, 9932-9939.
    [4.6] E. J. Liang, X. L. Ye and W. Kiefer, “Surface-Enhanced Raman Spectroscopy of Crystal Violet in the Presence of Halide and Halate Ions with Near-Infrared Wavelength Excitation,” J. Phys. Chem. A, 1997, 101, 7330-7335.
    [4.7] S. L. Kleinman, E. Ringe, N. Valley, K. L. Wustholz, E. Phillips, K. A. Scheidt, G. C. Schatz and Richard P. Van Duyne, “Single-Molecule Surface-Enhanced Raman Spectroscopy of Crystal Violet Isotopologues: Theory and Experiment,” J. Am. Chem. Soc., 2011, 133, 4115-4122.
    [4.8] W. J. Cho, Y. Kim and J. K. Kim, “Ultrahigh-Density Array of Silver Nanoclusters for SERS Substrate with High Sensitivity and Excellent Reproducibility,” ACS Nano, 2012, 6, 249-255.
    [4.9] E. C. Le Ru, E. Blackie, M. Meyer and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C, 2007, 111, 13794-13803.
    [4.10] S. L. Kleinman, R. R. Frontiera, A. I. Henry, J. A. Dieringer and R. P. V. Duyne, “Creating, Characterizing, and Controlling Chemistry with SERS Hot Spots,” Phys. Chem. Chem. Phys., 2013, 15, 21-36.
    [4.11] K. D. Osberg, M. Rycenga, N. Harris, A. L. Schmucker, M. R. Langille, G. C. Schatz, C. A. Mirkin, “Dispersible Gold Nanorod Dimers with Sub-5 nm Gaps as Local Amplifiers for Surface-Enhanced Raman Scattering,” Nano Lett., 2012, 12, 3828-3832.
    [4.12] W. J. Cho, Y. Kim and J. K. Kim, “Ultrahigh Density Array of Silver Nanoclusters for SERS Substrate with High Sensitivity and Excellent Reproducibility,” ACS Nano, 2012, 6, 249-255.

    Chapter 5
    [5.1] M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications,” Chem. Rev., 2011, 111, 3669-3712.
    [5.2] E. L. Ru and P. Etchegoin, “Principles of Surface Enhanced Raman Spectroscopy,” Elsevier: Oxford, U.K., 2009.
    [5.3] L. VJ, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang and R. S. Williams, “Ultrasmooth Silver Thin Films Deposited with a Germanium Nucleation Layer,” Nano Lett., 2009, 9, 178-182.
    [5.4] W. Chen, M. D. Thoreson, S. Ishii, A. V. Kildishev and V. M. Shalaev, “Ultra-thin Ultra-smooth and Low-loss Silver Films on a Germanium Wetting Layer,” Opt. Express, 2010, 18, 5124-5134.
    [5.5] F. Rollert, N. A. Stolwijk and H. Mehrer, “Solubility, Diffusion and Thermodynamic Properties of Silver in Silicon,” J. Phys. D: Appl. Phys., 1987, 20, 1148-1155.
    [5.6] E. Ringe, M. R. Langille, K. Sohn, J. Zhang, J. Huang, C. A. Mirkin, R. P. V. Duyne and L. D. Marks, “Plasmon Length: A Universal Parameter to Describe Size Effects in Gold Nanoparticles,” J. Phys. Chem. Lett., 2012, 3, 1479-1483.
    [5.7] T. J. Davis, K. C. Vernon and D. E. Gómez, “Effect of Retardation on Localized Surface Plasmon Resonances in a Metallic Nanorod,” Opt. Express, 2009, 17, 23655-23663.
    [5.8] J. P. Kottmann and O. J. F. Martin, “Retardation-induced Plasmon Resonances in Coupled Nanoparticles,” Opt. Lett., 2001, 26, 1096-1098.
    [5.9] X. Hu, T. Wang, L. Wang and S. Dong, “Surface-Enhanced Raman Scattering of 4-Aminothiophenol Self-Assembled Monolayers in Sandwich Structure with Nanoparticle Shape Dependence: Off-Surface Plasmon Resonance Condition,” J. Phys. Chem. C, 2007, 111, 6962-6969.
    [5.10] J. Zheng, Y. Zhou, X. Li, Y, Ji, T, Lu, R. Gu, “Surface-Enhanced Raman Scattering of 4-Aminothiophenol in Assemblies of Nanosized Particles and the Macroscopic Surface of Silver,” Langmuir, 2003, 19, 632-636.

    Chapter 6
    [6.1] E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Munoz-Javier, W. J. Parak, “Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression,” Nano Lett., 2005, 5, 585-589.
    [6.2] M. Xue, L. Li, B. J. Tremolet de Villers, H. Shen, J. Zhu, Z. Yu, A. Z. Stieg, Q. Pei, B. J. Schwartz, K. L. Wang, “Charge-Carrier Dynamics in Hybrid Plasmonic Organic Solar Cells with Ag Nanoparticles,” Appl. Phys. Lett., 2011, 98, 3302-3305.
    [6.3] M. Klevenz, S. Wetzel, M. Moller and A. Pucci, “Evaporation and Condensation of SiO and SiO2 Studied by Infrared Spectroscopy,” Appl. Spectrosc., 2010, 64, 298-303.
    [6.4] D. P. Lyvers, J. M. Moon, A. V. Kildishev, V. M. Shalaev and A. Wei, “Gold Nanorod Arrays as Plasmonic Cavity Resonators,” ACS Nano, 2008, 2, 2569-2576.
    [6.5] R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun and H. Giessen, ”Cavity-enhanced Localized Plasmon Resonance Sensing,” Appl. Phy. Lett., 2010, 97, 2531166-2531169.
    [6.6] O. Sánchez-Sobrado, G. Lozano, M. E. Calvo, A. Sánchez-Iglesias, L. M. Liz-Marzán and H. Míguez, “Interplay of Resonant Cavity Modes with Localized Surface Plasmons: Optical Absorption Properties of Bragg Stacks Integrating Gold Nanoparticles,” Adv. Mater., 2011, 23, 2108-2112.
    [6.7] C. Song, J. Chen, J. L. Abell, Y. Cui and Y. Zhao, “Ag-SiO2 Core-Shell Nanorod Arrays: Morphological, Optical, SERS, and Wetting Properties,” Langmuir, 2012, 28, 1488-1495.
    [6.8] J. Rodriguez-Fernandez, I. Pastoriza-Santos, J. Perez-Juste, F. J. G. deAbajo, and L. M. Liz-Marzan, “The Effect of Silica Coating on the Optical Response of Sub-micrometer Gold Spheres,” J. Phys. Chem. C, 2007, 111, 13361-13366.

    Chapter 8
    [8.1] J. H. Yoon, J. Lim, and S. Yoon, “Controlled Assembly and Plasmonic Properties of Asymmetric Core-Satellite Nanoassemblies,” ACS Nano, 2012, 6, 7199-7208.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE