簡易檢索 / 詳目顯示

研究生: 蘇聖航
Su, Sheng-Hang
論文名稱: 一個應用於感應器陣列之使用校正10位元行平行之逐次逼近寄存型類比數位轉換器
A 10-bit Column Parallel SAR ADC with Calibration for Sensor Array Applications
指導教授: 謝志成
Hsieh, Chih-Cheng
口試委員: 鄭桂忠
陳新
邱進峯
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 68
中文關鍵詞: 類比數位轉換器行平行多分段電容式
外文關鍵詞: analogue-to-digital converter, column-parallel, multiple segmented charge redistribution capacitive
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本論文提出一個應用於感應器陣列式之十位元行平行處理(Column-Parallel)的類比數位轉換器(Analog-to-Digital Converter, ADC),為降低單一類比數位轉換器之功耗,本論文採用漸近式類比數位轉換器(Successive Approximation ADC)的架構,並利用功耗較低的電容式數位類比轉換器(Capacitive Digital-to-Analog Converter)來產生類比數位轉換過程中所需的參考電位。由於傳統電容式數位類比轉換器是造成漸進式類比數位轉換器面積過大的主要原因,在行平行處理的應用中由於要將之實現在行寬(Column Pitch)中,因此,本論文提出一多分段電容式數位類比轉換器(Multi-Segmented Capacitive DAC)以降低數位類比轉換器所占的面積與功耗。為了解決分段DAC固有的不匹配問題,本論文提出了一種新的數位校正方法,使得SNDR從51.79dB提升至57.63dB。
    為了驗證本電路,本論文利用0.18微米CMOS製程來實現一原型實驗晶片。本實驗晶片操作在1V 的供給電源和4MS/ s 的採樣速率。在接近Nyquist 頻率所測得的有效位元數(ENOB),是9.28 位元。在經過校正後差動非線性誤差(differential non-linearity, DNL)由 +0.52 / -1 LSB 提升至 +0.62 / -0.65 LSB,積分非線性誤差(integrated non-linearity, INL)由 +3.2 / -3.1 LSB 提升至 +0.64 / -0.48 LSB。整顆晶片總功耗為53.5 微瓦,所計算的等效figure of merit(FoM)則為21.5fJ/Conversion-step。


    ABSTRACT
    This thesis proposes a 10-bit column-parallel successive approximation (SAR) analogue-to-digital converter (ADC) used for sensor array applications. A multiple segmented charge redistribution capacitive digital-to-analog converter (MS-C-DAC) is employed to reduce the area and power consumption. To solve the inherent mismatch issue of segmented DAC, a new digital calibration method is proposed, which improves SNDR from 51.79 dB to 57.63 dB.
    The prototype experimental chip is fabricated by 0.18um CMOS technology. The prototype ADC operates with 1V supply and 4MS/s sampling rate. The measured effective number of bits (ENOB) at near Nyquist frequency is 9.28-bit. The differential non-linearity is reduced from +0.52 / -1 LSB to +0.62 / -0.65 LSB, and the integrated non-linearity is improved from +3.2 / -3.1 LSB to +0.64 / -0.48. The total power consumption of 53.5uW is achieved, and the resultant figure of merit (FoM) is 21.5fJ/Conversion-step.

    CONTENTS ABSTRACT II CONTENTS III CHAPTER 1 INTRODUCTION 6 1.1 MOTIVATION 6 1.2 THESIS ORGANIZATION 9 CHAPTER 2 ADC OVERVIEW 10 2.1 SINGLE SLOPE ADC 10 2.2 Cyclic ADC 12 2.3 Delta-Sigma ADC 13 2.4 SUCCESSIVE APPROXIMATION REGISTER (SAR) ADC 14 2.5 THE EXISTING WORKS COMPARISONS 16 2.6 SUMMARY 17 CHAPTER 3 SUCCESSIVE APPROXIMATION ADC 18 3.1 PERFORMANCE METRICS OF SAR ADCS 18 3.1.1 Resolution 18 3.1.2 Quantization error 19 3.1.3 Differential Nonlinearity (DNL) and Integral Nonlinearity (INL) 19 3.1.4 Signal-to-Noise Ratio (SNR) 20 3.1.5 Effective Resolution 20 3.1.6 Figure of Merit (FoM) 21 3.2 GLOBAL SAR ADC 21 3.2.1 Single-ended SAR ADC 21 3.2.2 Differential SAR ADC 22 3.3 SAMPLE AND HOLD 23 3.3.1 Charge Injection and Clock Feedthrough 24 3.3.2 Thermal Noise 25 3.3.3 Modified Sample-and-Hold Circuit 26 3.3.3.1 Complementary Sampling Switch 26 3.3.3.2 Bootstrap Sampling Switch 27 3.3.4 Design Consideration 28 3.4 COMPARATOR 28 3.5 DIGITAL-TO-ANALOG CONVERTER 29 3.5.1 Binary Weighted DAC 29 3.5.2 Split DAC 30 3.5.3 Design Consideration 31 3.6 SUCCESSIVE APPROXIMATION REGISTER 32 3.7 SUMMARY 32 CHAPTER 4 PROPOSED SAR ADC DESIGN 33 4.1 CAPACITIVE DAC DESIGN 33 4.1.1 Case 1: Cs1<16/15C 35 4.1.2 Case 2: Cs1>16/15C 36 4.1.3 Set Cs1 Size 37 4.2 SAMPLE-AND-HOLD DESIGN 38 4.3 COMPARATOR DESIGN 42 4.4 ASYNCHRONOUS SAR LOGIC AND DAC CONTROL LOGIC CHOICE 44 4.5 CALIBRATION METHODOLOGY 44 4.5.1 Error Quantization 45 4.5.2 Calibration Phase 46 4.6 SIMULATION RESULT 47 4.7 SUMMARY 52 CHAPTER 5 CHIP IMPLEMENTATION AND MEASUREMENT 53 5.1 CHIP IMPLEMENTATION 53 5.2 MEASUREMENT ENVIRONMENT SETUP 54 5.3 MEASUREMENT RESULTS 55 5.3.1 Static Performance 55 5.3.2 Dynamic Performance 56 5.3.3 Measurement for multi-columns 59 5.4 PERFORMANCE SUMMARY AND COMPARISON 60 5.5 SUMMARY 62 CHAPTER 6 CONCLUSIONS 63 6.1 SUMMARY 63 6.2 FUTURE WORK 64 BIBLIOGRAPHY 65

    Bibliography
    [1] R. Hornsey, “Design and Fabrication of Integrated Image Sensors,” University of Waterloo.
    [2] R. Kuttner, “A 1.2 V 10 b 20Msample/s non-binary successive approximation ADC in 0.13 m CMOS,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2002, pp. 176–177.
    [3] N. Cho, B. Song, K. Kim, and J. Burm, S.W. Han, “A VGA CMOS Image Sensor with 11-bit Column Parallel Single-Slope ADCs,” IEEE International SoC Design Conference, 2010, pp. 25-27.
    [4] M. Furuta, Y. Nishikawa, T. Inoue, and S. Kawahito, “A High-Speed, High-Sensitivity Digital CMOS Image Sensor With a Global Shutter and 12-bit Column-Parallel Cyclic A/D Converters,” IEEE Journal of Solid State Circuits, Vol. 42, no. 4, pp. 766-774, Apr. 2007.
    [5] Y. Chae, J. Cheon, S. Lim, M. Kwon, K. Yoo, W. Jung, D. H. Lee, S. Ham, G. Han, “A 2.1 M Pixels, 120 Frame/s CMOS Image Sensor With Column-Parallel Δ∑ ADC Architecture,” IEEE Journal of Solid-State Circuits, Vol.46, no.1, pp. 236-247, Jan. 2011.
    [6] S. Matsuo, T. J. Bales, M. Shoda, S. Osawa, K. Kawamura, A. Andersson, M. Haque, H. Honda, B. Almond, Y. Mo, J. Gleason, T. Chow, and I. Takayanagi, “8.9-Megapixel Video Image Sensor With 14-b Column-Parallel SA-ADC,” IEEE Transactions on Electron Devices, Vol. 56, no. 11, pp. 2380-2389, Nov. 2009.
    [7] Z. Yang, J. Van der Spiegel, “A 10-bit 8.3MS/s Switched-current Successive Approximation ADC for Column-parallel Imagers,” IEEE International Symposium on Circuits and Systems, pp. 224-227, 2008.
    [8] Y. Shu and B. Song, “A 15-bit linear 20-MS/s pipelined ADC digitally calibrated with signal-dependent dithering,” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 342–350, Feb. 2008.
    [9] M. Yoshioka, K. Ishikawa, T. Takayama, and S. Tsukamoto, “A 10 b 50 MS/s 820 W SAR ADC with on-chip digital calibration,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2010, pp. 384–385.
    [10] Y. Chen, X. Zhu, H. Tamura, M. Kibune, Y. Tomita, T. Hamada, M. Yoshioka, K. Ishikawa, T. Takayama, J. Ogawa, S. Tsukamoto, and T. Kuroda, “Split capacitor DAC mismatch calibration in successive approximation ADC,” in Proc. IEEE Custom Integr. Circuits Conf., 2009, pp. 279–282.
    [11] S. Jiang, M. A. Do, K. S. Yeo, and W. M. Lim, “An 8-bit 200-MSample/s pipelined ADC with mixed-mode front-end S/H circuit,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 6, pp. 1430–1440, Jul. 2008.
    [12] F. Kuttner, “A 1.2-V 10-b 20-Msample/s nonbinary successive approximation ADC in 0.13-..m CMOS,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2002, pp. 176–177.
    [13] W. Liu, Y. Chang, S. K. Hsien, B. W. Chen, Y. P. Lee, W. T. Chen, T. Y. Yang, G. K. Ma, and Y. Chiu, “A 600 MS/s 30 mW 0.13um CMOS ADC array achieving over 60 dB SFDR with adaptive digital equalization,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2009, pp. 82–83.
    [14] M. Waltari and K. A. I. Halonen, “1-V 9-bit pipelined switched opamp ADC,” IEEE J. Solid-State Circuits, vol. 36, no. 1, pp. 129–134, Jan. 2001.

    [15] M. Yoshioka, M. Kudo, T. Mori, and S. Tsukamoto, “A 0.8 V 10 b 80 MS/s 6.5 mW pipelined ADC with regulated overdrive voltage biasing,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2007, pp. 452–453.
    [16] M. Furuta, Y. Nishikawa, T. Inoue, and S. Kawahito, “A high-speed high-sensitivity digital CMOS image sensor with a global shutter and 12-bit column-parallel cyclic AD converters,” IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 766–774, Apr. 2007.
    [17] C.-C. Liu et al., “A 10 b 100 MS/s 1.13 mW SAR ADC with binary- scaled error compensation,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2010, pp. 386–387.
    [18] M. Boulemnakher, E. Andre, J. Roux, and F. Paillardet, “A 1.2 V 4.5 mW 10 b 100 MS/s pipeline ADC in a 65 nm CMOS,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2008, pp. 250–251.
    [19] M. Snoeij, A. Theuwissen, K. Makinwa, and J. Huijsing, “A CMOS imager with column-level ADC using dynamic column fixed-pattern noise reduction,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 3007–3015, Dec. 2006.
    [20] J. Craninckx and G. Van der Plas, “A 65 fJ/conversion-step 0-to-50 MS/s 0-to-0.7 mW 9 b charge-sharing SAR ADC in 90 nm digital CMOS,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2007, pp. 246–247.

    [21] B. Fotouhi and D. Hodges, “High-resolution A/D conversion in MOS/LSI,” IEEE J. Solid-State Circuits, vol. SSC-14, no. 6, pp. 920–926, Dec. 1979.
    [22] D. Cline, “Noise, speed, and power trade-offs in pipelined analog to digital converters,” Ph.D. dissertation, UC Berkeley, Berkeley, CA, 1995.
    [23] R. Walker, H. Gao, P. Nuyujukian, K. Makinwa, K. V. Shenoy, T. Meng, and B. Murmann, “A 96-channel full data rate direct neural interface in 0.13 m CMOS,” in IEEE VLSI Circuits Dig. Tech. Papers, 2011, pp. 144–145.
    [24] T. Otaka, Y. Lee, T. Bales, P. Smith, J. Macdowell, S. Smith, and I. Takayanagi, “12-bit column-parallel ADC with accelerated ramp,” in Proc. IEEE Workshop CCDs, AIS, 2005, pp. 163–176.
    [25] J. Yuan, H. Chan, S. W. Fung, and B. Liu, “An activity-triggered 95.3 dB DR 75.6 dB THD CMOS imaging sensor with digital calibration,” IEEE J. Solid-State Circuits, vol. 44, no. 10, pp. 2834–2843, Oct. 2009.
    [26] C. C. Liu, S. J. Chang, G. Y. Huang, Y. Z. Lin, and C.M.Huang, “A 1V 11 fJ/conversion-step 10 bit 10 MS/s asynchronous SAR ADC in 0.18um CMOS,” in VLSI Circuits Dig. Tech. Papers, 2010, pp. 241–242.
    [27] M. F. Snoeij, A. J. P. Theuwissen, and J. H. Huijsing, “A low-power column-parallel 12-bit ADC for CMOS imagers,” in Proc. IEEE Workshop CCDs, AIS, 2005, pp. 169–172.
    [28] Ruoyu Xu,, Bing Liu,, and Jie Yuan, “Digitally Calibrated 768-kS/s 10-b Minimum-Size SAR ADC Array With Dithering,” IEEE Journal of Solid-State Circuits, Vol.47, no.9, pp. 2129 - 2140, Sept. 2012.
    [29] J. J. Kang andM. P. Flynn, “A 12 b 11MS/s successive approximation ADC with two comparators in 0.13 m CMOS,” in VLSI Circuits Dig. Tech. Papers, 2009, pp. 240–241.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE