研究生: |
陳又銘 |
---|---|
論文名稱: |
利用螢光共振能量轉移監測酸鹼應答型奈米微粒載體中Doxorubicin於細胞內的釋放情形 Using Fluorescence Resonance Energy Transfer Monitoring the Intracellular Release of Doxorubicin from pH-responsive Nanoparticles |
指導教授: |
宋信文
Sung, Hsing-Wen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 44 |
中文關鍵詞: | 螢光共振能量轉移 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用螢光共振能量轉移現象,來觀察包覆於奈米微粒載體內之doxorubicin於細胞內不同胞器的釋放情形。其原理為利用螢光共振能量轉移現象對於donor與acceptor間距離非常敏感之特性,當N-palmitoyl chitosan ( NPCS )奈米微粒進入不同酸鹼值的胞器時,隨著pH值的降低,接枝在其自由胺基上的螢光物質Cy5 ( acceptor )與包覆於疏水鏈段內之doxorubicin ( donor )兩者間的距離會逐漸拉開,造成螢光共振能量轉移現象的變化。由實驗結果得知,奈米微粒主要是藉由caveolae-mediated endocytosis進入細胞。最初奈米微粒位在caveosome ( pH 7.0 ),此時doxorubicin包覆於奈米微粒載體內,可觀察到強烈的螢光共振能量轉移現象。接著,隨著奈米微粒逐漸進入early endosome ( pH 6.2 ), doxorubicin與Cy5間的距離隨pH值降低而逐漸拉開,螢光共振能量轉移現象開始減弱。之後奈米微粒進入late endosome / lysosome ( pH 5.0 ),螢光共振能量轉移現象消失,僅顯現出doxorubicin的螢光,且doxorubicin釋放量有隨時間增加的趨勢,表現在細胞核內的doxorubicin螢光也漸漸增強。實驗最後再輔以MTT assay來測試細胞的存活率,結果顯示出Cy5 labled NPCS15%-DOX奈米微粒對於腫瘤細胞確實具有治療效果。
1.Jares-Erijman, E.A. and T.M. Jovin, FRET imaging. Nat Biotechnol, 2003. 21(11): p. 1387-95.
2.Wickersham, C.E., et al., Tracking a molecular motor with a nanoscale optical encoder. Nano Lett, 2010. 10(3): p. 1022-7.
3.Angres, B., et al., A membrane-bound FRET-based caspase sensor for detection of apoptosis using fluorescence lifetime and total internal reflection microscopy. Cytometry A, 2009. 75(5): p. 420-7.
4.Wu, Y., D. Xing, and W.R. Chen, Single cell FRET imaging for determination of pathway of tumor cell apoptosis induced by photofrin-PDT. Cell Cycle, 2006. 5(7): p. 729-34.
5.Hans, M.L. and A.M. Lowman, Biodegradable nanoparticles for drug delivery and targeting. Current Opinion in Solid State & Materials Science, 2002. 6(4): p. 319-327.
6.Hu, Y., et al., Synthesis and characterization of chitosan-poly(acrylic acid) nanoparticles. Biomaterials, 2002. 23(15): p. 3193-201.
7.Soppimath, K.S., et al., Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release, 2001. 70(1-2): p. 1-20.
8.Hillaireau, H. and P. Couvreur, Nanocarriers' entry into the cell: relevance to drug delivery. Cell Mol Life Sci, 2009. 66(17): p. 2873-96.
9.Yang, S.R., H.J. Lee, and J.D. Kim, Histidine-conjugated poly(amino acid) derivatives for the novel endosomolytic delivery carrier of doxorubicin. J Control Release, 2006. 114(1): p. 60-8.
10.Na, K., V.T. Sethuraman, and Y.H. Bae, Stimuli-sensitive polymeric micelles as anticancer drug carriers. Anticancer Agents Med Chem, 2006. 6(6): p. 525-35.
11.Kim, D., et al., Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH. Small, 2008. 4(11): p. 2043-50.
12.Mayor, S. and R.E. Pagano, Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol, 2007. 8(8): p. 603-12.
13.Yang, S.J., et al., Folic acid-conjugated chitosan nanoparticles enhanced protoporphyrin IX accumulation in colorectal cancer cells. Bioconjug Chem, 2010. 21(4): p. 679-89.
14.Nam, T., et al., Tumor targeting chitosan nanoparticles for dual-modality optical/MR cancer imaging. Bioconjug Chem, 2010. 21(4): p. 578-82.
15.Yang, S.J., et al., Effect of chitosan-alginate nanoparticles and ultrasound on the efficiency of gene transfection of human cancer cells. J Gene Med, 2010. 12(2): p. 168-79.
16.Tan, M.L., P.F. Choong, and C.R. Dass, Review: doxorubicin delivery systems based on chitosan for cancer therapy. J Pharm Pharmacol, 2009. 61(2): p. 131-42.
17.Tan, M.L., P.F. Choong, and C.R. Dass, Cancer, chitosan nanoparticles and catalytic nucleic acids. J Pharm Pharmacol, 2009. 61(1): p. 3-12.
18.Dass, C.R. and P.F. Choong, The use of chitosan formulations in cancer therapy. J Microencapsul, 2008. 25(4): p. 275-9.
19.Min, K.H., et al., Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J Control Release, 2008. 127(3): p. 208-18.
20.Kim, J.H., et al., Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy. Biomaterials, 2008. 29(12): p. 1920-30.
21.Han, H.D., et al., A chitosan hydrogel-based cancer drug delivery system exhibits synergistic antitumor effects by combining with a vaccinia viral vaccine. Int J Pharm, 2008. 350(1-2): p. 27-34.
22.Curotto, E. and F. Aros, Quantitative determination of chitosan and the percentage of free amino groups. Anal Biochem, 1993. 211(2): p. 240-1.
23.Perumal, O.P., et al., The effect of surface functionality on cellular trafficking of dendrimers. Biomaterials, 2008. 29(24-25): p. 3469-76.
24.Choi, Y., et al., Synthesis and functional evaluation of DNA-assembled polyamidoamine dendrimer clusters for cancer cell-specific targeting. Chem Biol, 2005. 12(1): p. 35-43.
25.von Gersdorff, K., et al., The internalization route resulting in successful gene expression depends on both cell line and polyethylenimine polyplex type. Mol Ther, 2006. 14(5): p. 745-53.
26.Araki, N., M.T. Johnson, and J.A. Swanson, A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. J Cell Biol, 1996. 135(5): p. 1249-60.
27.Manunta, M., et al., Gene delivery by dendrimers operates via a cholesterol dependent pathway. Nucleic Acids Res, 2004. 32(9): p. 2730-9.
28.Baldwin, J.P., et al., The subunit structure of the eukaryotic chromosome. Nature, 1975. 253(5489): p. 245-9.
29.Khalil, I.A., et al., Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev, 2006. 58(1): p. 32-45.
30.Lai, S.K., et al., Privileged delivery of polymer nanoparticles to the perinuclear region of live cells via a non-clathrin, non-degradative pathway. Biomaterials, 2007. 28(18): p. 2876-84.