簡易檢索 / 詳目顯示

研究生: 陳又銘
論文名稱: 利用螢光共振能量轉移監測酸鹼應答型奈米微粒載體中Doxorubicin於細胞內的釋放情形
Using Fluorescence Resonance Energy Transfer Monitoring the Intracellular Release of Doxorubicin from pH-responsive Nanoparticles
指導教授: 宋信文
Sung, Hsing-Wen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 44
中文關鍵詞: 螢光共振能量轉移
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用螢光共振能量轉移現象,來觀察包覆於奈米微粒載體內之doxorubicin於細胞內不同胞器的釋放情形。其原理為利用螢光共振能量轉移現象對於donor與acceptor間距離非常敏感之特性,當N-palmitoyl chitosan ( NPCS )奈米微粒進入不同酸鹼值的胞器時,隨著pH值的降低,接枝在其自由胺基上的螢光物質Cy5 ( acceptor )與包覆於疏水鏈段內之doxorubicin ( donor )兩者間的距離會逐漸拉開,造成螢光共振能量轉移現象的變化。由實驗結果得知,奈米微粒主要是藉由caveolae-mediated endocytosis進入細胞。最初奈米微粒位在caveosome ( pH 7.0 ),此時doxorubicin包覆於奈米微粒載體內,可觀察到強烈的螢光共振能量轉移現象。接著,隨著奈米微粒逐漸進入early endosome ( pH 6.2 ), doxorubicin與Cy5間的距離隨pH值降低而逐漸拉開,螢光共振能量轉移現象開始減弱。之後奈米微粒進入late endosome / lysosome ( pH 5.0 ),螢光共振能量轉移現象消失,僅顯現出doxorubicin的螢光,且doxorubicin釋放量有隨時間增加的趨勢,表現在細胞核內的doxorubicin螢光也漸漸增強。實驗最後再輔以MTT assay來測試細胞的存活率,結果顯示出Cy5 labled NPCS15%-DOX奈米微粒對於腫瘤細胞確實具有治療效果。


    第一章 緒論 1.1 螢光共振能量轉移 1.2 奈米微粒 1.3 Amphiphilic self-assembled奈米微粒載體 1.4 酸鹼應答型奈米微粒載體 1.5 胞吞作用路徑 1.6 幾丁質與幾丁聚醣 1.7 棕櫚酸(Palmitic Acid) 1.8 Doxorubicin 1.9 研究動機與目的 第二章 NPCS奈米微粒的特性探討 2.1 實驗目的 2.2 實驗材料與方法 2.2.1 製備NPCS材料 2.2.2 製備NPCS奈米微粒及pH敏感性測試 2.2.3 製備接有fluorescein螢光團的NPCS 2.2.4 製備接有fluorescein螢光團之NPCS奈米微粒 2.2.5 細胞的培養 2.2.6 細胞對CS及不同接枝度NPCS奈米微粒的吞食能力測試 2.3 實驗結果討論 2.3.1 NPCS材料的鑑定 2.3.2 NPCS奈米微粒的酸鹼應答性質 2.3.3 細胞吞食CS及不同接枝度的NPCS奈米微粒的能力比較 2.4 結論 第三章 螢光共振能量轉移用於Doxorubicin釋放之監測 3.1 實驗目的 3.2 實驗材料與方法 3.2.1 製備接有Cy5螢光團的NPCS15% 3.2.2 製備Cy5 labled NPCS15%-Dox奈米微粒 3.2.3 Cy5 labled NPCS15%-DOX奈米微粒的體外藥物釋放 3.2.4 不同pH值下螢光共振能量轉移的變化 3.2.5 NPCS奈米微粒進入細胞內之機制與其位於不同胞器之追蹤 3.2.5.1 溫度對細胞 endocytosis 的影響 3.2.5.2 胞吞機制 ( endocytosis pathway ) 的探討 3.2.5.3 奈米微粒於細胞內胞器之追蹤 3.2.6 Cy5 labled NPCS15%-Dox奈米微粒於細胞內的FRET變化及 Doxorubicin的釋放情形 3.2.7 細胞存活率測試 3.3 實驗結果討論 3.3.1 Cy5 labled NPCS15%材料 3.3.2 Cy5 labled NPCS15%-DOX奈米微粒的體外藥物釋放 3.3.3 不同pH值下螢光共振能量轉移的變化 3.3.4 NPCS15%奈米微粒進入細胞內之機制 3.3.5 奈米微粒於細胞內不同胞器之追蹤 3.3.6 Cy5 labled NPCS15%-Dox奈米微粒於細胞內的FRET變化及 Doxorubicin的釋放情形 3.3.7 細胞存活率測試 3.4 結論 第四章 參考文獻 參考文獻

    1.Jares-Erijman, E.A. and T.M. Jovin, FRET imaging. Nat Biotechnol, 2003. 21(11): p. 1387-95.
    2.Wickersham, C.E., et al., Tracking a molecular motor with a nanoscale optical encoder. Nano Lett, 2010. 10(3): p. 1022-7.
    3.Angres, B., et al., A membrane-bound FRET-based caspase sensor for detection of apoptosis using fluorescence lifetime and total internal reflection microscopy. Cytometry A, 2009. 75(5): p. 420-7.
    4.Wu, Y., D. Xing, and W.R. Chen, Single cell FRET imaging for determination of pathway of tumor cell apoptosis induced by photofrin-PDT. Cell Cycle, 2006. 5(7): p. 729-34.
    5.Hans, M.L. and A.M. Lowman, Biodegradable nanoparticles for drug delivery and targeting. Current Opinion in Solid State & Materials Science, 2002. 6(4): p. 319-327.
    6.Hu, Y., et al., Synthesis and characterization of chitosan-poly(acrylic acid) nanoparticles. Biomaterials, 2002. 23(15): p. 3193-201.
    7.Soppimath, K.S., et al., Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release, 2001. 70(1-2): p. 1-20.
    8.Hillaireau, H. and P. Couvreur, Nanocarriers' entry into the cell: relevance to drug delivery. Cell Mol Life Sci, 2009. 66(17): p. 2873-96.
    9.Yang, S.R., H.J. Lee, and J.D. Kim, Histidine-conjugated poly(amino acid) derivatives for the novel endosomolytic delivery carrier of doxorubicin. J Control Release, 2006. 114(1): p. 60-8.
    10.Na, K., V.T. Sethuraman, and Y.H. Bae, Stimuli-sensitive polymeric micelles as anticancer drug carriers. Anticancer Agents Med Chem, 2006. 6(6): p. 525-35.
    11.Kim, D., et al., Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH. Small, 2008. 4(11): p. 2043-50.
    12.Mayor, S. and R.E. Pagano, Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol, 2007. 8(8): p. 603-12.
    13.Yang, S.J., et al., Folic acid-conjugated chitosan nanoparticles enhanced protoporphyrin IX accumulation in colorectal cancer cells. Bioconjug Chem, 2010. 21(4): p. 679-89.
    14.Nam, T., et al., Tumor targeting chitosan nanoparticles for dual-modality optical/MR cancer imaging. Bioconjug Chem, 2010. 21(4): p. 578-82.
    15.Yang, S.J., et al., Effect of chitosan-alginate nanoparticles and ultrasound on the efficiency of gene transfection of human cancer cells. J Gene Med, 2010. 12(2): p. 168-79.
    16.Tan, M.L., P.F. Choong, and C.R. Dass, Review: doxorubicin delivery systems based on chitosan for cancer therapy. J Pharm Pharmacol, 2009. 61(2): p. 131-42.
    17.Tan, M.L., P.F. Choong, and C.R. Dass, Cancer, chitosan nanoparticles and catalytic nucleic acids. J Pharm Pharmacol, 2009. 61(1): p. 3-12.
    18.Dass, C.R. and P.F. Choong, The use of chitosan formulations in cancer therapy. J Microencapsul, 2008. 25(4): p. 275-9.
    19.Min, K.H., et al., Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J Control Release, 2008. 127(3): p. 208-18.
    20.Kim, J.H., et al., Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy. Biomaterials, 2008. 29(12): p. 1920-30.
    21.Han, H.D., et al., A chitosan hydrogel-based cancer drug delivery system exhibits synergistic antitumor effects by combining with a vaccinia viral vaccine. Int J Pharm, 2008. 350(1-2): p. 27-34.
    22.Curotto, E. and F. Aros, Quantitative determination of chitosan and the percentage of free amino groups. Anal Biochem, 1993. 211(2): p. 240-1.
    23.Perumal, O.P., et al., The effect of surface functionality on cellular trafficking of dendrimers. Biomaterials, 2008. 29(24-25): p. 3469-76.
    24.Choi, Y., et al., Synthesis and functional evaluation of DNA-assembled polyamidoamine dendrimer clusters for cancer cell-specific targeting. Chem Biol, 2005. 12(1): p. 35-43.
    25.von Gersdorff, K., et al., The internalization route resulting in successful gene expression depends on both cell line and polyethylenimine polyplex type. Mol Ther, 2006. 14(5): p. 745-53.
    26.Araki, N., M.T. Johnson, and J.A. Swanson, A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. J Cell Biol, 1996. 135(5): p. 1249-60.
    27.Manunta, M., et al., Gene delivery by dendrimers operates via a cholesterol dependent pathway. Nucleic Acids Res, 2004. 32(9): p. 2730-9.
    28.Baldwin, J.P., et al., The subunit structure of the eukaryotic chromosome. Nature, 1975. 253(5489): p. 245-9.
    29.Khalil, I.A., et al., Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev, 2006. 58(1): p. 32-45.
    30.Lai, S.K., et al., Privileged delivery of polymer nanoparticles to the perinuclear region of live cells via a non-clathrin, non-degradative pathway. Biomaterials, 2007. 28(18): p. 2876-84.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE