簡易檢索 / 詳目顯示

研究生: 黃怡萍
Huang, I-Ping
論文名稱: pH感應性中孔洞奈米矽球於抗藥性癌症之應用
Enhanced Chemotherapy of Cancer Using pH-Responsive Mesoporous Silica nanoparticles Orchestrating Targeted Delivery, Drug Resistance Mediation and Apoptotic Activation
指導教授: 黎耀基
Lai, Yiu-Kay
羅履維
Lo, Leu-Wei
口試委員: 楊重熙
李文權
吳立真
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 160
中文關鍵詞: 中孔洞奈米矽球pH感應性多重抗藥性P-醣蛋白
外文關鍵詞: mesoporous silica nanoparticles, pH-responsive, multidrug resistance, P-glycoprotein
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近十年來,利用奈米粒子作為載體來傳遞抗癌藥物到癌細胞的技術已逐漸蓬勃發展。奈米粒子依其化學結構可廣泛分類為有機、無機和複合型奈米粒子。本篇研究主要在建立一個利用無機材料中孔洞奈米矽球來進行藥物控制釋放的活體奈米系統。此中孔洞奈米矽球具有高表面積、可調控的孔洞大小、高熱穩定性、生物相容性及三個可個別修飾的區域(骨架、孔洞及外表面)。本篇主要探討以下三個主題:(1) pH感應性中孔洞奈米矽球於細胞內抗癌藥物之控制釋放,(2)利用pH感應性中孔洞奈米矽球對抗P-glycoprotein所引起的多重抗藥性,以增加癌症化療效果,及(3) pH感應性中孔洞奈米矽球結合Doxorubicin與TNFα在多重抗藥性腫瘤中具有協同性抑制作用。
    主題(1):pH感應性中孔洞奈米矽球之藥物傳遞系統具有一些引人注目的特色,包括(i)持續性的藥物釋放,(ii)減少因酵素水解造成的藥物釋放,(iii)經由簡單的表面電性修飾即可增加細胞吞噬效果,(iv)增加藥物裝載量及釋放效果。在細胞內的內胞體及溶小體等酸性環境下,藉由水解pH感應性鍵結(hydrazone bond)造成doxorubicin從中孔洞奈米矽球的孔洞中釋放出來,進而造成顯著的細胞凋亡。
    主題(2):多重抗藥性癌細胞是目前臨床癌症化療的一項重大障礙,而造成癌細胞多重抗藥性最重要的因子是癌細胞高度表達將藥物排出癌細胞外的跨膜幫浦P-glycoprotein (PGP),導致有效藥物在細胞內的濃度不足。因此我們利用pH感應性中孔洞奈米矽球來克服PGP所引起的多重抗藥性問題, pH感應性中孔洞奈米矽球是藉由胞吞作用進入細胞,在內胞體及溶小體等酸性環境下持續性釋放藥物,實驗證明藥物幾乎不會被PGP排出細胞外。在體外及活體實驗結果均顯示以pH感應性中孔洞奈米矽球進行Doxorubicin的控制釋放,在人類子宮惡性肉瘤抗藥性細胞中造成顯著的細胞凋亡。
    主題(3):文獻指出腫瘤壞死因子(TNFα)同時具有標靶藥物傳遞及抗腫瘤的特性,因此我們將TNFα修飾在pH感應性中孔洞奈米矽球的表面,而孔洞中裝載抗癌藥物Doxorubicin,希望有協同性抑制腫瘤的效果。初步結果顯示,此協同作用機制可能是由Doxorubicin及TNFα連續性引發細胞凋亡所造成的結果,而活體實驗應用有待後續研究繼續努力。
    總結,本研究利用中孔洞奈米矽球結合臨床抗癌藥物應用於標靶藥物傳遞及藥物控制釋放,由結果證明具有協同性抑制腫瘤的效果,未來,此奈米系統在生物醫學上之應用極具潛力性。


    Chinese abstract i English abstract iii List of Tables x List of Figures xi Abbreviations xv Chapter 1 : General Introduction 1 1-1 Nanoparticles and drug delivery 2 1-2 Targeted drug delivery 3 1-3 Nanoparticles for controlled release of anticancer drug 4 1-4 pH-sensitive drug delivery system (DDS) 5 1-5 MSNs for drug delivery 7 1-5-1 Controlled release and targeted drug delivery of MSNs 7 1-5-2 Pharmacokinetics of MSNs 8 1-5-2-1 Biodegradation 8 1-5-2-2 Biodistribution, retention and excretion 9 1-6 Propose of This Study 10 1-7 Table and Figures 12 Chapter 2 : Intracellular pH-Responsive Mesoporous Silica Nanoparticles for Controlled Release of Anticancer Chemotherapeutics 29 2-1 Abstract 30 2-2 Introduction 30 2-3 Materials and Methods 33 2-3-1 Experimental reagents 33 2-3-2 Cell Line and Animal 33 2-3-3 Preparation of Atto647-MSN 34 2-3-4 Synthesis of trimethylammonium (TA)-modified MSN 34 2-3-5 Synthesis of Aldehyde-modified (Atto647)-MSN 35 2-3-6 Conjugation of adipic acid dihydrazide in aldehyde-modified MSN (MSN-hydrazide) 35 2-3-7 Doxorubicin conjugated with MSN-hydrazide (MSN-hydrazone-Dox) 36 2-3-8 In vitro release studies 36 2-3-9 Confocal microscopy 36 2-3-10 TUNEL assay 37 2-3-11 Cell Viability via DNA fragmentation 37 2-3-12 Cell Viability via MTT Assay 38 2-3-13 TEM Imaging and Compositional Element Analysis of Cell Ultra-sections 39 2-3-14 TEM Imaging of Liver Tissue-sections 39 2-3-15 In vivo Optical Imaging 40 2-3-16 Characterization 40 2-4 Results and Discussions 41 2-4-1 Synthesis and modification of various doxorubicin conjugated MSN-hydrazide 41 2-4-2 Schematic illustration of pH-sensitive MSN drug delivery platform 42 2-4-3 Characterization of morphology, surface area and pore size of MSNs 42 2-4-4 Characterization of chemical bonds and surface organic groups of MSNs 43 2-4-5 pH-sensitive release doxorubicin of MSN-Hydrazone-Dox 44 2-4-6 Cellular uptake of Atto647-labeled MSN-Hydrazone-Dox 46 2-4-7 MSN-Hydrazone-Dox induce cell apoptosis detect by TUNEL assay 47 2-4-8 MSN-Hydrazone-Dox enhances cytotoxicity of HepG2 cells 48 2-4-9 Biodistribution of Atto647-MSN-Hydrazone-Dox in mice 49 2-5 Conclusions 50 2-6 Table 51 2-7 Figures 52 Chapter 3 : Enhanced Chemotherapy of Cancer Using pH-Sensitive Mesoporous Silica Nanoparticles to Antagonize P-Glycoprotein-Mediated Drug Resistance 64 3-1 Abstract 65 3-2 Introduction 65 3-3 Materials and Methods 69 3-3-1 Experimental reagents 69 3-3-2 Cell Line 69 3-3-3 Cellular Retention of Doxorubicin 70 3-3-4 Confocal Microscopy 70 3-3-5 In vitro Cytotoxicity 71 3-3-6 DNA Fragmentation 71 3-3-7 The TUNEL assay 72 3-3-8 Animal model 72 3-3-9 TEM Imaging of tumor tissue 73 3-3-10 Immunohistochemistry 73 3-3-11 P-glycoprotein detection by Flow Cytometry 74 3-3-12 Membrane protein extraction and Western blot 74 3-4 Results 75 3-4-1 MSN-Hydrazone-Dox enhances cellular retention of doxorubicin 75 3-4-2 MSN-Hydrazone-Dox is uptaken by the MES-SA/Dx5 cancer cell through endocytosis 76 3-4-3 MSN-Hydrazone-Dox enhances cytotoxicity of the MES-SA/Dx5 cancer cells 76 3-4-4 MSN-Hydrazone-Dox but not MSN-Hydrazone induces and enhances apoptosis in MES-SA/Dx5 cells 77 3-4-5 MSN-Hydrazone-Dox is uptaken and induces apoptosis of tumor cells in vivo 78 3-5 Discussion 78 3-6 Conclusions 81 3-7 Figures 82 Chapter 4 : Enhanced Anticancer Effect of the Combination of Doxorubicin- and TNFα-conjugated pH-Responsive Mesoporous Silica Nanoparticles in Multidrug Resistant Tumor 92 4-1 Introduction 93 4-2 Materials and Methods 95 4-2-1 Experimental reagents 95 4-2-2 Cell Line 96 4-2-3 Preparation of Atto647-MSN 96 4-2-4 Synthesis of Aldehyde-modified (Atto647)-MSN 97 4-2-5 Conjugation of adipic acid dihydrazide in aldehyde-modified MSN (MSN-hydrazide) 97 4-2-6 Doxorubicin conjugated with MSN-hydrazide (MSN-hydrazone-Dox) 98 4-2-7 Surface Modification of MSN-hydrazone-Dox with PEG 98 4-2-8 Surface Modification of PEGylated MSN-hydrazone-Dox with TA 98 4-2-9 TNFα conjugation of PEGylated MSN-hydrazone-Dox 99 4-2-10 In vitro release studies 99 4-2-11 ELISA assay 99 4-2-12 Confocal microscopy 100 4-2-13 Cell Viability via MTT Assay 100 4-2-14 TNFR1 detection by Flow Cytometry 101 4-2-15 Characterization 101 4-3 Results and Discussions 102 4-3-1 Synthesis of TNFα-PEG-MSN-hydrazone-Dox 102 4-3-2 Schematic illustration of TNFα-conjugated pH-sensitive MSN drug delivery system 103 4-3-3 Characterization of morphology and size of MSNs 104 4-3-4 pH-sensitive release doxorubicin of PEG-MSN-Hydrazone-Dox 104 4-3-5 Cellular uptake of Atto647-labeled TNFα-PEG-MSN-hydrazone-Dox 105 4-3-6 TNFα-PEG-MSN-Hydrazone-Dox enhances cytotoxicity of MES-SA/Dx5 cells 106 4-4 Summary 106 4-5 Table 107 4-6 Figures 108 References 115 Publication list 130 Appendix 131

    Acharya, G. and K. Park (2006). "Mechanisms of controlled drug release from drug-eluting stents." Adv Drug Deliv Rev 58(3): 387-401.
    Aggarwal, B. B. (2003). "Signalling pathways of the TNF superfamily: a double-edged sword." Nat Rev Immunol 3(9): 745-756.
    Alexis, F., E. Pridgen, L. K. Molnar and O. C. Farokhzad (2008). "Factors affecting the clearance and biodistribution of polymeric nanoparticles." Mol Pharm 5(4): 505-515.
    Altinoglu, E. I., T. J. Russin, J. M. Kaiser, B. M. Barth, P. C. Eklund, M. Kester and J. H. Adair (2008). "Near-Infrared Emitting Fluorophore-Doped Calcium Phosphate Nanoparticles for In Vivo Imaging of Human Breast Cancer." ACS Nano 2(10): 2075-2084.
    Angelos, S., E. Choi, F. Vögtle, L. De Cola and J. I. Zink (2007). "Photo-Driven Expulsion of Molecules from Mesostructured Silica Nanoparticles." J Phys Chem C 111(18): 6589-6592.
    Angelos, S., N. M. Khashab, Y. W. Yang, A. Trabolsi, H. A. Khatib, J. F. Stoddart and J. I. Zink (2009). "pH Clock-Operated Mechanized Nanoparticles." J Am Chem Soc 131(36): 12912-12914.
    Angelos, S., Y.-W. Yang, K. Patel, J. F. Stoddart and J. I. Zink (2008). "pH-Responsive Supramolecular Nanovalves Based on Cucurbit[6]uril Pseudorotaxanes." Angew Chem Int Ed 47(12): 2222-2226.
    Arayne, M. S. and N. Sultana (2006). "Porous nanoparticles in drug delivery systems." Pak J Pharm Sci 19(2): 158-169.
    Ashkenazi, A. and V. M. Dixit (1998). "Death receptors: signaling and modulation." Science 281(5381): 1305-1308.
    Attama, A. A. and U. F. Ezeamama (2005). "Systematic delivery of chloroquine and promethazine using pH-sensitive polymers." Drug Deliv 12(2): 103-107.
    Bae, Y., N. Nishiyama and K. Kataoka (2007). "In vivo antitumor activity of the folate-conjugated pH-Sensitive polymeric micelle selectively releasing adriamycin in the intracellular acidic compartments." Bioconjugate Chem 18(4): 1131-1139.
    Bae, Y., S. Fukushima, A. Harada and K. Kataoka (2003). "Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change." Angew Chem Int Ed Engl 42(38): 4640-4643.
    Baker, S. J. and E. P. Reddy (1998). "Modulation of life and death by the TNF receptor superfamily." Oncogene 17(25): 3261-3270.
    Balamuralidhara, V., T. M. Pramodkumar, N. Srujana, M. P. Venkatesh, N. V. Gupta, K. L. Krishna and H. V. Gangadharappa (2011). "pH sensitive drug delivery systems: A review." Am J Drug Discov Dev 1: 24-48.
    Bansal, T., N. Akhtar, M. Jaggi, R. K. Khar and S. Talegaonkar (2009). "Novel formulation approaches for optimising delivery of anticancer drugs based on P-glycoprotein modulation." Drug Discov Today 14(21-22): 1067-1074.
    Bareford, L. M. and P. W. Swaan (2007). "Endocytic mechanisms for targeted drug delivery." Adv Drug Deliv Rev 59(8): 748-758.
    Bernardos, A., E. Aznar, C. Coll, R. Martinez-Manez, J. M. Barat, M. D. Marcos, F. Sancenon, A. Benito and J. Soto (2008). "Controlled release of vitamin B-2 using mesoporous materials functionalized with amine-bearing gate-like scaffoldings." J Controlled Release 131(3): 181-189.
    Bernardos, A., E. Aznar, M. D. Marcos, R. Martínez-Máñez, F. Sancenón, J. Soto, J. M. Barat and P. Amorós (2009). "Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose." Angew Chem Int Ed 48(32): 5884-5887.
    Bodley, A., L. F. Liu, M. Israel, R. Seshadri, Y. Koseki, F. C. Giuliani, S. Kirschenbaum, R. Silber and M. Potmesil (1989). "DNA topoisomerase II-mediated interaction of doxorubicin and daunorubicin congeners with DNA." Cancer Res 49(21): 5969-5978.
    Cauda, V., A. Schlossbauer and T. Bein (2010). "Bio-degradation study of colloidal mesoporous silica nanoparticles: Effect of surface functionalization with organo-silanes and poly(ethylene glycol)." Micropor Mesopor Mater 132(1-2): 60-71.
    Cauda, V., L. Muhlstein, B. Onida and T. Bein (2009). "Tuning drug uptake and release rates through different morphologies and pore diameters of confined mesoporous silica." Micropor Mesopor Mater 118(1-3): 435-442.
    Chapman, P. B., T. J. Lester, E. S. Casper, J. L. Gabrilove, G. Y. Wong, S. J. Kempin, P. J. Gold, S. Welt, R. S. Warren, H. F. Starnes and et al. (1987). "Clinical pharmacology of recombinant human tumor necrosis factor in patients with advanced cancer." J Clin Oncol 5(12): 1942-1951.
    Chen, A. M., M. Zhang, D. Wei, D. Stueber, O. Taratula, T. Minko and H. He (2009). "Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells." Small 5(23): 2673-2677.
    Cheng, S.-H., C.-H. Lee, C.-S. Yang, F.-G. Tseng, C.-Y. Mou and L.-W. Lo (2009). "Mesoporous silica nanoparticles functionalized with an oxygen-sensing probe for cell photodynamic therapy: potential cancer theranostics." J Mater Chem 19(9): 1252-1257.
    Cheng, S.-H., C.-H. Lee, M.-C. Chen, J. S. Souris, F.-G. Tseng, C.-S. Yang, C.-Y. Mou, C.-T. Chen and L.-W. Lo (2010). "Tri-functionalization of mesoporous silica nanoparticles for comprehensive cancer theranostics-the trio of imaging, targeting and therapy." J Mater Chem 20(29): 6149-6157.
    Corma, A., U. Díaz, M. Arrica, E. Fernández and Í. Ortega (2009). "Organic–Inorganic Nanospheres with Responsive Molecular Gates for Drug Storage and Release." Angew Chem Int Ed 48(34): 6247-6250.
    Cuenca, A. G., H. Jiang, S. N. Hochwald, M. Delano, W. G. Cance and S. R. Grobmyer (2006). "Emerging implications of nanotechnology on cancer diagnostics and therapeutics." Cancer 107(3): 459-466.
    Dey, N. S., S. Majumadar and M. E. B. Rao (2008). "Multiparticulate Drug Delivery Systems for Controlled Release." Trop J Pharm Res 7(3): 1067-1075.
    Dong, X., C. A. Mattingly, M. T. Tseng, M. J. Cho, Y. Liu, V. R. Adams and R. J. Mumper (2009). "Doxorubicin and paclitaxel-loaded lipid-based nanoparticles overcome multidrug resistance by inhibiting P-glycoprotein and depleting ATP." Cancer Res 69(9): 3918-3926.
    Du, L., S. J. Liao, H. A. Khatib, J. F. Stoddart and J. I. Zink (2009). "Controlled-Access Hollow Mechanized Silica Nanocontainers." J Am Chem Soc 131(42): 15136-15142.
    Duhem, C., F. Ries and M. Dicato (1996). "What does multidrug resistance (MDR) expression mean in the clinic?" Oncologist 1(3): 151-158.
    Etrych, T., P. Chytil, M. Jelínková, B. Říhová and K. Ulbrich (2002). "Synthesis of HPMA Copolymers Containing Doxorubicin Bound via a Hydrazone Linkage. Effect of Spacer on Drug Release and in vitro Cytotoxicity." Macromol Biosci 2(1): 43-52.
    Filipits, M. (2004). "Mechanisms of cancer: multidrug resistance." Drug Discov Today Dis Mech 1(2): 229-234.
    Fu, Q., G. V. Rama Rao, T. L. Ward, Y. Lu and G. P. Lopez (2006). "Thermoresponsive Transport through Ordered Mesoporous Silica/PNIPAAm Copolymer Membranes and Microspheres†." Langmuir 23(1): 170-174.
    Gao, C. B., I. Izquierdo-Barba, I. Nakase, S. Futaki, J. F. Ruan, K. Sakamoto, Y. Sakamoto, K. Kuroda, O. Terasaki and S. Che (2009). "Mesostructured silica based delivery system for a drug with a peptide as a cell-penetrating vector." Micropor Mesopor Mater 122(1-3): 201-207.
    Gao, Q., Y. Xu, D. Wu, Y. H. Sun and X. A. Li (2009). "pH-Responsive Drug Release from Polymer-Coated Mesoporous Silica Spheres." J Phys Chem C 113(29): 12753-12758.
    Ghoroghchian, P. P., P. R. Frail, K. Susumu, D. Blessington, A. K. Brannan, F. S. Bates, B. Chance, D. A. Hammer and M. J. Therien (2005). "Near-infrared-emissive polymersomes: Self-assembled soft matter for in vivo optical imaging." Proc Natl Acad Sci USA 102(8): 2922-2927.
    Gillies, E. R. and J. M. J. Fréchet (2005). "pH-Responsive Copolymer Assemblies for Controlled Release of Doxorubicin." Bioconjugate Chem 16(2): 361-368.
    Gillies, E. R., A. P. Goodwin and J. M. J. Frechet (2004). "Acetals as pH-sensitive linkages for drug delivery." Bioconjugate Chem 15(6): 1254-1263.
    Giri, S., B. G. Trewyn, M. P. Stellmaker and V. S. Y. Lin (2005). "Stimuli-Responsive Controlled-Release Delivery System Based on Mesoporous Silica Nanorods Capped with Magnetic Nanoparticles." Angew Chem Int Ed 44(32): 5038-5044.
    Gottesman, M. M., T. Fojo and S. E. Bates (2002). "Multidrug resistance in cancer: role of ATP-dependent transporters." Nat Rev Cancer 2(1): 48-58.
    Harker, W. G., D. Bauer, B. B. Etiz, R. A. Newman and B. I. Sikic (1986). "Verapamil-mediated sensitization of doxorubicin-selected pleiotropic resistance in human sarcoma cells: selectivity for drugs which produce DNA scission." Cancer Res 46(5): 2369-2373.
    He, Q. and J. Shi (2011). "Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility." J Mater Chem 21: 5845-5855.
    He, Q., J. Shi, F. Chen, M. Zhu and L. Zhang (2010). "An anticancer drug delivery system based on surfactant-templated mesoporous silica nanoparticles." Biomaterials 31(12): 3335-3346.
    He, Q., J. Shi, M. Zhu, Y. Chen and F. Chen (2010). "The three-stage in vitro degradation behavior of mesoporous silica in simulated body fluid." Micropor Mesopor Mater 131(1-3): 314-320.
    He, Q., Z. Zhang, F. Gao, Y. Li and J. Shi (2011). "In vivo Biodistribution and Urinary Excretion of Mesoporous Silica Nanoparticles: Effects of Particle Size and PEGylation." Small 7(2): 271-280.
    Hernandez, R., H.-R. Tseng, J. W. Wong, J. F. Stoddart and J. I. Zink (2004). "An Operational Supramolecular Nanovalve." J Am Chem Soc 126(11): 3370-3371.
    Hong, C. Y., X. Li and C. Y. Pan (2009). "Fabrication of smart nanocontainers with a mesoporous core and a pH-responsive shell for controlled uptake and release." J Mater Chem 19(29): 5155-5160.
    Hsiao, J.-K., C.-P. Tsai, T.-H. Chung, Y. Hung, M. Yao, H.-M. Liu, C.-Y. Mou, C.-S. Yang, Y.-C. Chen and D.-M. Huang (2008). "Mesoporous Silica Nanoparticles as a Delivery System of Gadolinium for Effective Human Stem Cell Tracking." Small 4(9): 1445-1452.
    Hu, C.-H., X.-Z. Zhang, L. Zhang, X.-D. Xu and R.-X. Zhuo (2009). "Temperature- and pH-sensitive hydrogels to immobilize heparin-modified PEI/DNA complexes for sustained gene delivery." J Mater Chem 19(47): 8982-8989.
    Inaba, M., H. Kobayashi, Y. Sakurai and R. K. Johnson (1979). "Active efflux of daunorubicin and adriamycin in sensitive and resistant sublines of P388 leukemia." Cancer Res 39(6 Pt 1): 2200-2203.
    Jain, K. K. (2010). "Advances in the field of nanooncology." BMC Med 8: 83.
    Jakubowski, A. A., E. S. Casper, J. L. Gabrilove, M. A. Templeton, S. A. Sherwin and H. F. Oettgen (1989). "Phase I trial of intramuscularly administered tumor necrosis factor in patients with advanced cancer." J Clin Oncol 7(3): 298-303.
    Ju, X. J., R. Xie, L. Yang and L. Y. Chu (2009). "Biodegradable 'intelligent' materials in response to chemical stimuli for biomedical applications." Expert Opin Ther Pat 19(5): 683-696.
    Kedar, E., O. Palgi, G. Golod, I. Babai and Y. Barenholz (1997). "Delivery of cytokines by liposomes. III. Liposome-encapsulated GM-CSF and TNF-alpha show improved pharmacokinetics and biological activity and reduced toxicity in mice." J Immunother 20(3): 180-193.
    Kilpelainen, M., J. Riikonen, M. A. Vlasova, A. Huotari, V. P. Lehto, J. Salonen, K. H. Herzig and K. Jarvinen (2009). "In vivo delivery of a peptide, ghrelin antagonist, with mesoporous silicon microparticles." J Controlled Release 137(2): 166-170.
    Kim, H. J., H. Matsuda, H. Zhou and I. Honma (2006). "Ultrasound-Triggered Smart Drug Release from a Poly(dimethylsiloxane)– Mesoporous Silica Composite." Adv Mater 18(23): 3083-3088.
    Kirpotin, D. B., D. C. Drummond, Y. Shao, M. R. Shalaby, K. Hong, U. B. Nielsen, J. D. Marks, C. C. Benz and J. W. Park (2006). "Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models." Cancer Res 66(13): 6732-6740.
    Klichko, Y., M. Liong, E. Choi, S. Angelos, A. E. Nel, J. F. Stoddart, F. Tamanoi and J. I. Zink (2009). "Mesostructured Silica for Optical Functionality, Nanomachines, and Drug Delivery." J Am Ceram Soc 92(s1): s2-s10.
    Krishna, R. and L. D. Mayer (2000). "Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs." Eur J Pharm Sci 11(4): 265-283.
    Kyriakides, T. R., C. Y. Cheung, N. Murthy, P. Bornstein, P. S. Stayton and A. S. Hoffman (2002). "pH-sensitive polymers that enhance intracellular drug delivery in vivo." J Controlled Release 78(1-3): 295-303.
    Lai, C.-Y., B. G. Trewyn, D. M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija and V. S. Y. Lin (2003). "A Mesoporous Silica Nanosphere-Based Carrier System with Chemically Removable CdS Nanoparticle Caps for Stimuli-Responsive Controlled Release of Neurotransmitters and Drug Molecules." J Am Chem Soc 125(15): 4451-4459.
    Lampidis, T. J., A. Krishan, L. Planas and H. Tapiero (1986). "Reversal of intrinsic resistance to adriamycin in normal cells by verapamil." Cancer Drug Deliv 3(4): 251-259.
    Lebold, T., C. Jung, J. Michaelis and C. Brauchle (2009). "Nanostructured Silica Materials As Drug-Delivery Systems for Doxorubicin: Single Molecule and Cellular Studies." Nano Lett 9(8): 2877-2883.
    Lebret, V., L. Raehm, J. O. Durand, M. Smaihi, M. H. Werts, M. Blanchard-Desce, D. Methy-Gonnod and C. Dubernet (2010). "Folic acid-targeted mesoporous silica nanoparticles for two-photon fluorescence." J Biomed Nanotechnol 6(2): 176-180.
    Lee, C. H., S. H. Cheng, I. P. Huang, J. S. Souris, C. S. Yang, C. Y. Mou and L. W. Lo (2010). "Intracellular pH-responsive mesoporous silica nanoparticles for the controlled release of anticancer chemotherapeutics." Angew Chem Int Ed Engl 49(44): 8214-8219.
    Lee, C.-H., L.-W. Lo, C.-Y. Mou and C.-S. Yang (2008). "Synthesis and Characterization of Positive-Charge Functionalized Mesoporous Silica Nanoparticles for Oral Drug Delivery of an Anti-Inflammatory Drug." Adv Funct Mater 18(20): 3283-3292.
    Lee, C.-H., S.-H. Cheng, Y.-J. Wang, Y.-C. Chen, N.-T. Chen, J. Souris, C.-T. Chen, C.-Y. Mou, C.-S. Yang and L.-W. Lo (2009). "Near-Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution." Adv Funct Mater 19(2): 215-222.
    Lee, E. S., K. Na and Y. H. Bae (2005). "Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor." J Control Release 103(2): 405-418.
    Lee, S. B., M. Hassan, R. Fisher, O. Chertov, V. Chernomordik, G. Kramer-Marek, A. Gandjbakhche and J. Capala (2008). "Affibody molecules for in vivo characterization of HER2-positive tumors by near-infrared imaging." Clin Cancer Res 14(12): 3840-3849.
    Leung, K. C. F., T. D. Nguyen, J. F. Stoddart and J. I. Zink (2006). "Supramolecular Nanovalves Controlled by Proton Abstraction and Competitive Binding." Chem Mater 18(25): 5919-5928.
    Lin, H. M., G. S. Zhu, J. J. Xing, B. Gao and S. L. Qiu (2009). "Polymer-Mesoporous Silica Materials Templated with an Oppositely Charged Surfactant/Polymer System for Drug Delivery." Langmuir 25(17): 10159-10164.
    Lin, Q., Q. Huang, C. Li, C. Bao, Z. Liu, F. Li and L. Zhu (2010). "Anticancer Drug Release from a Mesoporous Silica Based Nanophotocage Regulated by Either a One- or Two-Photon Process." J Am Chem Soc 132(31): 10645-10647.
    Lin, Y. S., C. P. Tsai, H. Y. Huang, C. T. Kuo, Y. Hung, D. M. Huang, Y. C. Chen and C. Y. Mou (2005). "Well-Ordered Mesoporous Silica Nanoparticles as Cell Markers." Chem Mater 17(18): 4570-4573.
    Liong, M., J. Lu, M. Kovochich, T. Xia, S. G. Ruehm, A. E. Nel, F. Tamanoi and J. I. Zink (2008). "Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery." ACS Nano 2(5): 889-896.
    Liong, M., S. Angelos, E. Choi, K. Patel, J. F. Stoddart and J. I. Zink (2009). "Mesostructured multifunctional nanoparticles for imaging and drug delivery." J Mater Chem 19(35): 6251-6257.
    Liu, F. S. (2009). "Mechanisms of chemotherapeutic drug resistance in cancer therapy--a quick review." Taiwan J Obstet Gynecol 48(3): 239-244.
    Liu, H.-M., S.-H. Wu, C.-W. Lu, M. Yao, J.-K. Hsiao, Y. Hung, Y.-S. Lin, C.-Y. Mou, C.-S. Yang, D.-M. Huang and Y.-C. Chen (2008). "Mesoporous Silica Nanoparticles Improve Magnetic Labeling Efficiency in Human Stem Cells." Small 4(5): 619-626.
    Liu, J. W., X. M. Jiang, C. Ashley and C. J. Brinker (2009). "Electrostatically Mediated Liposome Fusion and Lipid Exchange with a Nanoparticle-Supported Bilayer for Control of Surface Charge, Drug Containment, and Delivery." J Am Chem Soc 131(22): 7567-7569.
    Liu, R., P. H. Liao, J. K. Liu and P. Y. Feng (2011). "Responsive Polymer-Coated Mesoporous Silica as a pH-Sensitive Nanocarrier for Controlled Release." Langmuir 27(6): 3095-3099.
    Liu, R., Y. Zhang, X. Zhao, A. Agarwal, L. J. Mueller and P. Feng (2010). "pH-Responsive Nanogated Ensemble Based on Gold-Capped Mesoporous Silica through an Acid-Labile Acetal Linker." J Am Chem Soc 132(5): 1500-1501.
    Lu, F., S.-H. Wu, Y. Hung and C.-Y. Mou (2009). "Size Effect on Cell Uptake in Well-Suspended, Uniform Mesoporous Silica Nanoparticles." Small 5(12): 1408-1413.
    Lu, J., E. Choi, F. Tamanoi and J. I. Zink (2008). "Light-Activated Nanoimpeller-Controlled Drug Release in Cancer Cells." Small 4(4): 421-426.
    Lu, J., M. Liong, J. I. Zink and F. Tamanoi (2007). "Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs." Small 3(8): 1341-1346.
    Lu, J., M. Liong, Z. Li, J. I. Zink and F. Tamanoi (2010). "Biocompatibility, Biodistribution, and Drug-Delivery Efficiency of Mesoporous Silica Nanoparticles for Cancer Therapy in Animals." Small 6(16): 1794-1805.
    Mal, N. K., M. Fujiwara and Y. Tanaka (2003). "Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica." Nature 421(6921): 350-353.
    Mellaerts, R., J. A. G. Jammaer, M. Van Speybroeck, H. Chen, J. Van Humbeeck, P. Augustijns, G. Van den Mooter and J. A. Martens (2008). "Physical state of poorly water soluble therapeutic molecules loaded into SBA-15 ordered mesoporous silica carriers: A case study with itraconazole and ibuprofen." Langmuir 24(16): 8651-8659.
    Menei, P., M. Roger, A. Clavreul, M. C. Venier-Julienne, C. Passirani and C. Montero-Menei (2011). "The potential of combinations of drug-loaded nanoparticle systems and adult stem cells for glioma therapy." Biomaterials 32(8): 2106-2116.
    Meng, H., M. Liong, T. Xia, Z. Li, Z. Ji, J. I. Zink and A. E. Nel (2010). "Engineered Design of Mesoporous Silica Nanoparticles to Deliver Doxorubicin and P-Glycoprotein siRNA to Overcome Drug Resistance in a Cancer Cell Line." ACS Nano 4(8): 4539-4550.
    Meng, H., M. Xue, T. Xia, Y.-L. Zhao, F. Tamanoi, J. F. Stoddart, J. I. Zink and A. E. Nel (2010). "Autonomous in Vitro Anticancer Drug Release from Mesoporous Silica Nanoparticles by pH-Sensitive Nanovalves." J Am Chem Soc 132(36): 12690-12697.
    Mohanraj, V. J. and Y. Chen (2006). "Nanoparticles - A review." Tropical Journal of Pharm Res 5(1): 561-573.
    Mortera, R., S. Fiorilli, E. Garrone, E. Verne and B. Onida (2010). "Pores occlusion in MCM-41 spheres immersed in SBF and the effect on ibuprofen delivery kinetics: A quantitative model." Chem Eng J 156(1): 184-192.
    Na, K. (2007). "pH-sensitive polymeric micelles for the effective delivery of anti-cancer drug." Korean J Gastroenterol 49(5): 314-319.
    Neidle, S. (1979). "The molecular basis for the action of some DNA-binding drugs." Prog Med Chem 16: 151-221.
    Nguyen, T. D., K. C. F. Leung, M. Liong, C. D. Pentecost, J. F. Stoddart and J. I. Zink (2006). "Construction of a pH-Driven Supramolecular Nanovalve." Org Lett 8(15): 3363-3366.
    Oishi, M., H. Hayashi, M. Iijima and Y. Nagasaki (2007). "Endosomal release and intracellular delivery of anticancer drugs using pH-sensitive PEGylated nanogels." J Mater Chem 17(35): 3720-3725.
    Paciotti, G. F., L. Myer, D. Weinreich, D. Goia, N. Pavel, R. E. McLaughlin and L. Tamarkin (2004). "Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery." Drug Deliv 11(3): 169-183.
    Persidis, A. (1999). "Cancer multidrug resistance." Nat Biotechnol 17(1): 94-95.
    Prabaharan, M., J. J. Grailer, S. Pilla, D. A. Steeber and S. Gong (2009). "Amphiphilic multi-arm-block copolymer conjugated with doxorubicin via pH-sensitive hydrazone bond for tumor-targeted drug delivery." Biomaterials 30(29): 5757-5766.
    Radu, D. R., C. Y. Lai, K. Jeftinija, E. W. Rowe, S. Jeftinija and V. S. Lin (2004). "A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent." J Am Chem Soc 126(41): 13216-13217.
    Ramachandran, C., T. S. A. Samy, X. L. Huang, Z. K. Yuan and A. Krishan (1993). "Doxorubicin-induced DNA breaks, topoisomerase II activity and gene expression in human melanoma cells." Biochem Pharm 45(6): 1367-1371.
    Roepe, P. D. (1992). "Analysis of the steady-state and initial rate of doxorubicin efflux from a series of multidrug-resistant cells expressing different levels of P-glycoprotein." Biochemistry 31(50): 12555-12564.
    Rosenholm, J. M., A. Meinander, E. Peuhu, R. Niemi, J. E. Eriksson, C. Sahlgren and M. Lindén (2008). "Targeting of Porous Hybrid Silica Nanoparticles to Cancer Cells." ACS Nano 3(1): 197-206.
    Sauer, A. M., A. Schlossbauer, N. Ruthardt, V. Cauda, T. Bein and C. Bräuchle (2010). "Role of Endosomal Escape for Disulfide-Based Drug Delivery from Colloidal Mesoporous Silica Evaluated by Live-Cell Imaging." Nano Lett 10(9): 3684-3691.
    Schlossbauer, A., D. Schaffert, J. Kecht, E. Wagner and T. Bein (2008). "Click Chemistry for High-Density Biofunctionalization of Mesoporous Silica." J Am Chem Soc 130(38): 12558-12559.
    Schlossbauer, A., J. Kecht and T. Bein (2009). "Biotin–Avidin as a Protease-Responsive Cap System for Controlled Guest Release from Colloidal Mesoporous Silica." Angew Chem Int Ed 48(17): 3092-3095.
    Shabbits, J. A., R. Krishna and L. D. Mayer (2001). "Molecular and pharmacological strategies to overcome multidrug resistance." Expert Rev Anticancer Ther 1(4): 585-594.
    Shi, L. J., S. Khondee, T. H. Linz and C. Berkland (2008). "Poly(N-vinylformamide) nanogels capable of pH-sensitive protein release." Macromolecules 41(17): 6546-6554.
    Shoichet, M. S., M. Shi and J. Lu (2009). "Organic nanoscale drug carriers coupled with ligands for targeted drug delivery in cancer." J Mater Chem 19(31): 5485-5498.
    Slowing, I., B. G. Trewyn and V. S. Lin (2006). "Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells." J Am Chem Soc 128(46): 14792-14793.
    Slowing, II, B. G. Trewyn and V. S. Lin (2007). "Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins." J Am Chem Soc 129(28): 8845-8849.
    Slowing, II, J. L. Vivero-Escoto, C. W. Wu and V. S. Lin (2008). "Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers." Adv Drug Deliv Rev 60(11): 1278-1288.
    Somogyi, A., M. Eichelbaum and R. Gugler (1982). "Prediction of bioavailability for drugs with a high first-pass effect using oral clearance data." Eur J Clin Pharmacol 22(1): 85-90.
    Song, S. W., K. Hidajat and S. Kawi (2007). "pH-Controllable drug release using hydrogel encapsulated mesoporous silica." Chem Commun (Camb)(42): 4396-4398.
    Souris, J. S., C.-H. Lee, S.-H. Cheng, C.-T. Chen, C.-S. Yang, J.-a. A. Ho, C.-Y. Mou and L.-W. Lo (2010). "Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles." Biomaterials 31(21): 5564-5574.
    Suh, W. H., Y. H. Suh and G. D. Stucky (2009). "Multifunctional nanosystems at the interface of physical and life sciences." Nano Today 4(1): 27-36.
    Sun, G. Y., Y. P. Chang, S. H. Li, Q. Y. Li, R. Xu, J. M. Gu and E. B. Wang (2009). "pH-responsive controlled release of antitumour-active polyoxometalate from mesoporous silica materials." Dalton Trans (23): 4481-4487.
    Tewey, K. M., T. C. Rowe, L. Yang, B. D. Halligan and L. F. Liu (1984). "Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II." Science 226(4673): 466-468.
    Thierry, B. (2009). "Drug Nanocarriers and Functional Nanoparticles: Applications in Cancer Therapy." Curr Drug Deliv 6(4): 391-403.
    Thomas, C. R., D. P. Ferris, J.-H. Lee, E. Choi, M. H. Cho, E. S. Kim, J. F. Stoddart, J.-S. Shin, J. Cheon and J. I. Zink (2010). "Noninvasive Remote-Controlled Release of Drug Molecules in Vitro Using Magnetic Actuation of Mechanized Nanoparticles." J Am Chem Soc 132(31): 10623-10625.
    Torchilin, V. P. (2005). "Recent advances with liposomes as pharmaceutical carriers." Nat Rev Drug Discov 4(2): 145-160.
    Traunecker, H. C., M. C. Stevens, D. J. Kerr and D. R. Ferry (1999). "The acridonecarboxamide GF120918 potently reverses P-glycoprotein-mediated resistance in human sarcoma MES-Dx5 cells." Br J Cancer 81(6): 942-951.
    Trewyn, B. G., Slowing, II, S. Giri, H. T. Chen and V. S. Y. Lin (2007). "Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release." Acc Chem Res 40(9): 846-853.
    Tsai, C.-P., C.-Y. Chen, Y. Hung, F.-H. Chang and C.-Y. Mou (2009). "Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells." J Mater Chem 19(32): 5737-5743.
    Uhrich, K. E., S. M. Cannizzaro, R. S. Langer and K. M. Shakesheff (1999). "Polymeric Systems for Controlled Drug Release." Chem Rev 99(11): 3181-3198.
    Valcarcel, M., A. I. Lopez-Lorente and B. M. Simonet (2011). "Analytical potential of hybrid nanoparticles." Anal Bioanal Chem 399(1): 43-54.
    Vallet-Regi, M., A. Ramila, R. P. del Real and J. Perez-Pariente (2001). "A new property of MCM-41: Drug delivery system." Chem Mater 13(2): 308-311.
    Vallet-Regí, M., F. Balas and D. Arcos (2007). "Mesoporous Materials for Drug Delivery." Angew Chem Int Edit 46(40): 7548-7558.
    van der Veen, A. H., A. M. Eggermont, A. L. Seynhaeve, T. van and T. L. ten Hagen (1998). "Biodistribution and tumor localization of stealth liposomal tumor necrosis factor-alpha in soft tissue sarcoma bearing rats." Int J Cancer 77(6): 901-906.
    van Horssen, R., T. L. Ten Hagen and A. M. Eggermont (2006). "TNF-alpha in cancer treatment: molecular insights, antitumor effects, and clinical utility." Oncologist 11(4): 397-408.
    Visaria, R., J. C. Bischof, M. Loren, B. Williams, E. Ebbini, G. Paciotti and R. Griffin (2007). "Nanotherapeutics for enhancing thermal therapy of cancer." Int J Hyperthermia 23(6): 501-511.
    Vivero-Escoto, J. L., I. I. Slowing, B. G. Trewyn and V. S. Y. Lin (2010). "Mesoporous Silica Nanoparticles for Intracellular Controlled Drug Delivery." Small 6(18): 1952-1967.
    Vivero-Escoto, J. L., I. I. Slowing, C.-W. Wu and V. S. Y. Lin (2009). "Photoinduced Intracellular Controlled Release Drug Delivery in Human Cells by Gold-Capped Mesoporous Silica Nanosphere." J Am Chem Soc 131(10): 3462-3463.
    Wajant, H., K. Pfizenmaier and P. Scheurich (2003). "Tumor necrosis factor signaling." Cell Death Differ 10(1): 45-65.
    Wang, G., A. N. Otuonye, E. A. Blair, K. Denton, Z. M. Tao and T. Asefa (2009). "Functionalized mesoporous materials for adsorption and release of different drug molecules: A comparative study." J Solid State Chem 182(7): 1649-1660.
    Wang, L.-S., L.-C. Wu, S.-Y. Lu, L.-L. Chang, I. T. Teng, C.-M. Yang and J.-a. A. Ho (2010). "Biofunctionalized Phospholipid-Capped Mesoporous Silica Nanoshuttles for Targeted Drug Delivery: Improved Water Suspensibility and Decreased Nonspecific Protein Binding." ACS Nano 4(8): 4371-4379.
    Wang, Y. and E. A. Arriaga (2008). "Monitoring incorporation, transformation and subcellular distribution of N-l-leucyl-doxorubicin in uterine sarcoma cells using capillary electrophoretic techniques." Cancer Lett 262(1): 123-132.
    Wesselinova, D. (2011). "Current Major Cancer Targets for Nanoparticle Systems." Curr Cancer Drug Tar 11(2): 164-183.
    Wilstermann, A. M. and N. Osheroff (2003). "Stabilization of eukaryotic topoisomerase II-DNA cleavage complexes." Curr Top Med Chem 3(3): 321-338.
    Wu, S.-H., Y.-S. Lin, Y. Hung, Y.-H. Chou, Y.-H. Hsu, C. Chang and C.-Y. Mou (2008). "Multifunctional Mesoporous Silica Nanoparticles for Intracellular Labeling and Animal Magnetic Resonance Imaging Studies." ChemBioChem 9(1): 53-57.
    Xu, W. J., Q. Gao, Y. Xu, D. Wu and Y. H. Sun (2009). "pH-Controlled drug release from mesoporous silica tablets coated with hydroxypropyl methylcellulose phthalate." Mater Res Bull 44(3): 606-612.
    Yang, P. P., Z. W. Quan, L. L. Lu, S. S. Huang and J. Lin (2008). "Luminescence functionalization of mesoporous silica with different morphologies and applications as drug delivery systems." Biomaterials 29(6): 692-702.
    Yang, P. P., Z. W. Quan, Z. Y. Hou, C. X. Li, X. J. Kang, Z. Y. Cheng and J. Lin (2009). "A magnetic, luminescent and mesoporous core-shell structured composite material as drug carrier." Biomaterials 30(27): 4786-4795.
    Yang, Q., S. Wang, P. Fan, L. Wang, Y. Di, K. Lin and F.-S. Xiao (2005). "pH-Responsive Carrier System Based on Carboxylic Acid Modified Mesoporous Silica and Polyelectrolyte for Drug Delivery." Chem Mater 17(24): 5999-6003.
    Yang, Y., W. Song, A. Wang, P. Zhu, J. Fei and J. Li (2010). "Lipid coated mesoporous silica nanoparticles as photosensitive drug carriers." Phys Chem Chem Phys 12(17): 4418-4422.
    Yessine, M. A. and J. C. Leroux (2004). "Membrane-destabilizing polyanions: interaction with lipid bilayers and endosomal escape of biomacromolecules." Adv Drug Deliv Rev 56(7): 999-1021.
    Yi, Y., J. H. Kim, H. W. Kang, H. S. Oh, S. W. Kim and M. H. Seo (2005). "A polymeric nanoparticle consisting of mPEG-PLA-Toco and PLMA-COONa as a drug carrier: improvements in cellular uptake and biodistribution." Pharm Res 22(2): 200-208.
    Yoshimori, T., A. Yamamoto, Y. Moriyama, M. Futai and Y. Tashiro (1991). "Bafilomycin A1, a specific inhibitor of vacuolar-type H+-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells." J Biol Chem 266(26): 17707-17712.
    You, Y.-Z., K. K. Kalebaila, S. L. Brock and D. Oupický (2008). "Temperature-Controlled Uptake and Release in PNIPAM-Modified Porous Silica Nanoparticles." Chem Mater 20(10): 3354-3359.
    Zhu, C. L., X. Y. Song, W. H. Zhou, H. H. Yang, Y. H. Wen and X. R. Wang (2009). "An efficient cell-targeting and intracellular controlled-release drug delivery system based on MSN-PEM-aptamer conjugates." J Mater Chem 19(41): 7765-7770.
    Zhu, S., Z. Zhou and D. Zhang (2007). "Control of Drug Release through the In Situ Assembly of Stimuli-Responsive Ordered Mesoporous Silica with Magnetic Particles." ChemPhysChem 8(17): 2478-2483.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE