研究生: |
陳宛柔 Chen, Wan-Jou |
---|---|
論文名稱: |
三羰基鎝99m(I)標誌特異性生物分子作為腫瘤造影劑之研究 Study on 99mTc(I)-Tricarbonyl Labeled Specific Biomolecules as a Tumor Imaging Agent |
指導教授: |
羅建苗
Lo, Jem-Mau 張建文 Chang, Chien-Wen |
口試委員: |
羅建苗
Jem-Mau Lo 張建文 Chien-Wen Chang 李德偉 Te-Wei Lee 高志浩 Chih-Hao Kao 鍾相彬 Shiang-Bin Jong |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 157 |
中文關鍵詞: | 鎝99m 、三羰基鎝99m(I) 、腫瘤造影劑 、賀癌平 、體抑素 、體抑素衍生物 、人類血清白蛋白奈米粒子 |
外文關鍵詞: | Tc-99m, 99mTc(I)-Tricarbonyl Ion, Tumor Imaging Agent, Herceptin, Somatostatin, Octreotide, HSA nanoparticles |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
癌症至今仍是人類最主要的死因,據估計全球每四人中就有一人是死於癌症。因此,癌症的早期診斷與治療便成為現今癌症研究的主要課題。利用放射性藥物的核子診斷醫學,於腫瘤偵測亦或在腫瘤治療的應用上,扮演相當重要的角色。本篇論文,主要是利用三羰基鎝99m(I)標誌方法將放射性核種-鎝99m直接標誌於三種不同的生物分子上,包括標誌單株抗體抗癌藥物賀癌平(Herceptin)、耦合組胺酸的體抑素衍生物(histidine-tagged octreotide derivatives)及蛋白質基底的人類血清白蛋白奈米粒子(protein-based HSA nanoparticles)。分別對其三羰基鎝99m(I)標誌產物進行放射化學特性的研究,評估其作為單光子發射斷層造影劑的可能性。論文主要包含三個研究主題:研究一,評估三羰基鎝99m(I)直接標誌單株抗體抗癌藥物賀癌平的可行性。研究二,評估三羰基鎝99m(I)直接標誌耦合組胺酸的體抑素衍生物的可行性,並將其標誌產物打入接種胰臟癌腫瘤的小鼠體內進行活體試驗的評估。研究三,製備三羰基鎝99m(I)標誌人類血清白蛋白奈米粒子作為單光子發射斷層造影劑。
由研究一結果得知,透過直接標誌法可於溫和的反應條件下得到三羰基鎝99m(I)標誌的賀癌平產物,且此標誌產物仍保有其對於人類上皮生長因子第二接受器(Human Epidermal Growth Factor Receptor 2,HER-2)的生物親和性。於體外血清穩定度試驗中,更表現出良好的血清穩定度。此結果對於未來進行動物實驗的評估測試相當有利。由研究二結果得知,耦合組胺酸的體抑素衍生物可以固相胜肽合成法成功製備得到,且具有對於2a型體抑素接受器(Somatostatin sst2a Receptor)的生物親和性。透過直接標誌法亦可於溫和的反應條件下得到三羰基鎝99m(I)標誌的耦合組胺酸的體抑素衍生物產物。而從生物分佈及造影實驗中得知,其中的三羰基鎝99m(I)標誌的耦合3個組胺酸的體抑素衍生物及三羰基鎝99m(I)標誌的耦合5個組胺酸的體抑素衍生物,兩者分別於給藥後四小時或八小時腫瘤累積吸收達到最高值,且可以觀察到明顯的腫瘤輪廓影像。由此可知,三羰基鎝99m(I)標誌的耦合組胺酸的體抑素衍生物有其潛能作為腫瘤造影劑,特別是應用於偵測表現有體抑素接受器的腫瘤。由研究三結果得知,人類血清白蛋白奈米粒子可由去溶劑法製備得到,透過直接標誌法亦可於溫和的反應條件下得到三羰基鎝99m(I)標誌的人類血清白蛋白奈米粒子。未來亦可利用人類血清白蛋白奈米粒子作為載體,包覆攜載化療藥物作為治療之用途,使三羰基鎝99m(I)標誌的人類血清白蛋白奈米粒子成為同時具有診斷與治療雙功能的診療劑。
Abstract
At present, cancer remains the major cause of human death in the world, accounting for nearly 1 of every 4 deaths. The current focus of modern cancer researches is on cancer early detection and advanced treatments. Diagnostic nuclear imaging using radiopharmaceuticals is playing an increasingly important role in the tumor detection as well as therapeutic applications. In this dissertation, the 99mTc-tricarbonyl-based radiolabeling method was attempted for direct labeling of 99mTc to three different biomacromolecules, including: Herceptin (trastuzumab), histidine-tagged octreotide derivatives and protein-based HSA nanoparticles. The radiochemical properties of the resultant 99mTc-labeled biomacromolecules were characterized and investigated for their potentials on SPECT imaging. Thus, three research projects are included in this dissertation: (I) Direct 99mTc labeling of Herceptin (trastuzumab) by 99mTc(I)-tricarbonyl ion, (II) 99mTc(I) Radiolabeling of histidine-conjugated octreotide derivatives and preliminary in vivo evaluation in AR42J tumor-bearing mice, (III) The novel preparation of 99mTc(I)-labeled human serum albumin (HSA) nanoparticles as a SPECT imaging agent.
The first study shows that 99mTc(I)-trastuzumab was prepared by simple incubating Herceptin (trastuzumab) with [99mTc(OH2)3(CO)3]+ in normal saline under mild radiolabeling condition. The tumor-targeting capability of the 99mTc(I)-labeled trastuzumab was validated with high binding affinity to HER-2-overexpressing cancer cells. Well in vitro stability of 99mTc(I)-trastuzumab in serum suggests its potential as a SPECT imaging agent in vivo. The second study shows that octreotide together with its three histidine-tagged octreotide derivatives (his-octreotide, his3-octreotide and his5-octreotide) were successfully synthesized using a facile solid phase peptide synthesis method. This study also shows that all the histidine-tagged octreotide derivatives demonstrated similar high binding affinities as octreotide to the human somatostatin sst2a receptor. [99mTc(OH2)3(CO)3]+ was also applied as an efficient reagent for direct labeling histidine-conjugated octreotide derivatives by a simple mixing procedure under mild condition. Biodistribution and imaging studies of the 99mTc(I)-his3-octreotide and 99mTc(I)-his5-octreotide demonstrated the highest tumor uptake at 4 h and 8 h postinjection, respectively, and both displayed a clear tumor delineation. It is anticipated that the 99mTc(I)-labeled histidine-conjugated octreotide derivatives will be useful for imaging SSTRs-positive tumors. The third study established a new and efficient protocol to prepare 99mTc(I)-HSA-NPs conjugates with high purity and stability. Labeling of 99mTc(I) to HSA-NPs was also performed in the similar mild way as aforementioned, and achieved high radiochemical yield and specific activity. In the future, the HSA-NPs could be further loaded with anticancer drugs for potential therapeutic uses. The versatility and attractive properties suggest that 99mTc(I)-HSA-NPs have great potentials for future theranostic applications.
References
1. Saha, G.B., Fundamentals of Nuclear Pharmacy. Sixth ed. 2010: Springer New York.
2. Strebhardt, K. and A. Ullrich, Paul Ehrlich's magic bullet concept: 100 years of progress. Nat Rev Cancer, 2008. 8(6): p. 473-480.
3. Sattelberger, A.P. and R.W. Atcher, Nuclear medicine finds the right chemistry. Nat Biotechnol, 1999. 17(9): p. 849-850.
4. Alberto, R., et al., A novel organometallic aqua complex of technetium for the labeling of biomolecules: Synthesis of [99mTc(OH2)3(CO)3]+ from [99mTcO4]- in aqueous solution and its reaction with a bifunctional ligand. J Am Chem Soc, 1998. 120(31): p. 7987-7988.
5. Alberto, R., et al., Synthesis and properties of boranocarbonate: A convenient in situ CO source for the aqueous preparation of [99mTc(OH2)3(CO)3]+. J Am Chem Soc, 2001. 123(13): p. 3135-3136.
6. Schibli, R., et al., Steps toward high specific activity labeling of biomolecules for therapeutic application: Preparation of precursor [188Re(H2O)3(CO)3]+ and synthesis of tailor-made bifunctional ligand systems. Bioconjugate Chem, 2002. 13(4): p. 750-756.
7. Stichelberger, A., et al., Versatile synthetic approach to new bifunctional chelating agents tailor made for labeling with the fac-[M(CO)3]+ core (M = Tc, 99mTc, Re): synthesis, in vitro, and in vivo behavior of the model complex [M(APPA)(CO)3] (APPA = [(5-amino-pentyl)-pyridin-2-yl-methyl-amino]-acetic acid). Nucl Med Biol, 2003. 30(5): p. 465-470.
8. Alberto, R., et al., First application of fac-[99mTc(OH2)3(CO)3]+ in bioorganometallic chemistry: Design, structure, and in vitro affinity of a 5-HT1A receptor ligand labeled with 99mTc. J Am Chem Soc, 1999. 121(25): p. 6076-6077.
9. La Bella, R., et al., A 99mTc(I)-postlabeled high affinity bombesin analogue as a potential tumor imaging agent. Bioconjugate Chem, 2002. 13(3): p. 599-604.
10. La Bella, R., et al., In vitro and in vivo evaluation of a 99mTc(I)-labeled bombesin analogue for imaging of gastrin releasing peptide receptor-positive tumors. Nucl Med Biol, 2002. 29(5): p. 553-560.
11. Psimadas, D., et al., Study of the labeling of two novel RGD-peptidic derivatives with the precursor [99mTc(H2O)3(CO)3]+ and evaluation for early angiogenesis detection in cancer. Appl Radiat Isotopes, 2006. 64(2): p. 151-159.
12. Decristoforo, C., et al., Comparison of in vitro and in vivo properties of [99mTc]cRGD peptides labeled using different novel Tc-cores. Q J Nucl Med Mol Imaging, 2007. 51(1): p. 33-41.
13. Waibel, R., et al., Stable one-step technetium-99m labeling of His-tagged recombinant proteins with a novel Tc(I)-carbonyl complex. Nat Biotechnol, 1999. 17(9): p. 897-901.
14. Lin, K.J., et al., In vivo imaging of radiation-induced tissue apoptosis by 99mTc(I)-his6-annexin A5. Ann Nucl Med, 2012. 26(3): p. 272-280.
15. Fani, M., et al., Comparative evaluation of linear and cyclic 99mTc-RGD peptides for targeting of integrins in tumor angiogenesis. Anticancer Res, 2006. 26(1A): p. 431-434.
16. Schibli, R. and P.A. Schubiger, Current use and future potential of organometallic radiopharmaceuticals. Eur J Nucl Med Mol I, 2002. 29(11): p. 1529-1542.
17. Egli, A., et al., Organometallic 99mTc-aquaion labels peptide to an unprecedented high specific activity. J Nucl Med, 1999. 40(11): p. 1913-1917.
18. Zolle, I., Technetium-99m Pharmaceuticals: Preparation and Quality Control in Nuclear Medicine. 2007: Springer Berlin Heidelberg.
19. Welch, M.J. and C.S. Redvanly, Handbook of Radiopharmaceuticals: Radiochemistry and Applications. 2003: John Wiley & Sons England Ltd.
20. Perrier, C. and E. Segrè, Radioactive isotopes of element 43. Nature, 1937. 140: p. 193-194.
21. Perrier, C. and E. Segrè, Technetium: the element of atomic number 43. Nature, 1947. 159: p. 24.
22. Segrè, E. and G.T. Seaborg, Nuclear isomerism in element 43. Phys Rev, 1938. 54(9): p. 772.
23. Seaborg, G.T. and E. Segrè, Nuclear isomerism in element 43. Phys Rev, 1939. 55(9): p. 808-814.
24. Vallabhajosula, S., Molecular Imaging: Radiopharmaceuticals for PET and SPECT. 2009: Springer Berlin Heidelberg.
25. Lebowitz, E. and P. Richards, Radionuclide generator systems. Semin Nucl Med, 1974. 4(3): p. 257-268.
26. Banerjee, S., M.R. Pillai, and N. Ramamoorthy, Evolution of Tc-99m in diagnostic radiopharmaceuticals. Semin Nucl Med, 2001. 31(4): p. 260-277.
27. Jurisson, S.S. and J.D. Lydon, Potential technetium small molecule radiopharmaceuticals. Chem Rev, 1999. 99(9): p. 2205-2218.
28. Liu, S., The role of coordination chemistry in the development of target-specific radiopharmaceuticals. Chem Soc Rev, 2004. 33(7): p. 445-461.
29. Liu, S. and D.S. Edwards, 99mTc-Labeled small peptides as diagnostic radiopharmaceuticals. Chem Rev, 1999. 99(9): p. 2235-2268.
30. Schubiger, P.A., R. Alberto, and A. Smith, Vehicles, chelators, and radionuclides: Choosing the "building blocks" of an effective therapeutic radioimmunoconjugate. Bioconjugate Chem, 1996. 7(2): p. 165-179.
31. Tisato, F., et al., The preparation of substitution-inert 99Tc metal-fragments: Promising candidates for the design of new 99mTc radiopharmaceuticals. Coordin Chem Rev, 2006. 250(15-16): p. 2034-2045.
32. Liu, S., Bifunctional coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radionuclides. Adv Drug Deliver Rev, 2008. 60(12): p. 1347-1370.
33. Chakraborty, S. and S. Liu, 99mTc and 111In-labeling of small biomolecules: Bifunctional chelators and related coordination chemistry. Curr Top Med Chem, 2010. 10(11): p. 1113-1134.
34. Banerjee, S.R., et al., New directions in the coordination chemistry of 99mTc: a reflection on technetium core structures and a strategy for new chelate design. Nucl Med Biol, 2005. 32(1): p. 1-20.
35. Klingensmith III, W.C., et al., Clinical evaluation of Tc-99m N,N'-bis(mercaptoacetyl)-2,3-diaminopropanoate as a replacement for I-131 hippurate: concise communication. J Nucl Med, 1984. 25(1): p. 42-48.
36. Rao, T.N., et al., Technetium (V) and rhenium (V) complexes of 2,3-bis(mercaptoacetamido)propanoate. Chelate ring stereochemistry and influence on chemical and biological properties. J Am Chem Soc, 1990. 112(15): p. 5798-5804.
37. Eshima, D., et al., Animal evaluation of technetium-99m triamide mercaptide complexes as potential renal imaging agents. J Nucl Med, 1987. 28(7): p. 1180-1186.
38. Vanbilloen, H.P., M.J. De Roo, and A.M. Verbruggen, Complexes of technetium-99m with tetrapeptides containing one alanyl and three glycyl moieties. Eur J Nucl Med, 1996. 23(1): p. 40-48.
39. O'Neil, J.P., et al., Progestin radiopharmaceuticals labeled with technetium and rhenium: Synthesis, binding affinity, and in vivo distribution of a new progestin N2S2-metal conjugate. Bioconjugate Chem, 1994. 5(3): p. 182-193.
40. Baidoo, K.E. and S.Z. Lever, Synthesis of a diaminedithiol bifunctional chelating agent for incorporation of technetium-99m into biomolecules. Bioconjugate Chem, 1990. 1(2): p. 132-137.
41. Eisenhut, M., et al., Bifunctional NHS-BAT ester for antibody conjugation and stable technetium-99m labeling: Conjugation chemistry, immunoreactivity and kit formulation. J Nucl Med, 1996. 37(2): p. 362-370.
42. Alberto, R., et al., Potential of the "[M(CO)3]+" (M = Re, Tc) moiety for the labeling of biomolecules. Radiochim Acta, 1997. 79(2): p. 99-103.
43. Pak, J.K., et al., Ne functionalization of metal and organic protected L-histidine for a highly efficient, direct labeling of biomolecules with [Tc(OH2)3(CO)3]+. Chemistry, 2003. 9(9): p. 2053-2061.
44. Rattat, D., et al., Comparison of tridentate ligands in competition experiments for their ability to form a [99mTc(CO)3] complex. Tetrahedron Lett, 2004. 45: p. 2531-2534.
45. Schibli, R., et al., Influence of the denticity of ligand systems on the in vitro and in vivo behavior of 99mTc(I)-tricarbonyl complexes: A hint for the future functionalization of biomolecules. Bioconjugate Chem, 2000. 11(3): p. 345-351.
46. Alberto, R., et al., Basic aqueous chemistry of [M(OH2)3(CO)3]+ (M = Re, Tc) directed towards radiopharmaceutical application. Coordin Chem Rev, 1999. 192: p. 901-919.
47. Abrams, M.J., et al., Technetium-99m-human polyclonal IgG radiolabeled via the hydrazino nicotinamide derivative for imaging focal sites of infection in rats. J Nucl Med, 1990. 31(12): p. 2022-2028.
48. Schwartz, D.A., et al., Preparation of hydrazino-modified proteins and their use for the synthesis of 99mTc-protein conjugates. Bioconjugate Chem, 1991. 2(5): p. 333-336.
49. Ultee, M.E., et al., Tumor imaging with technetium-99m-labeled hydrazinonicotinamide-Fab' conjugates. J Nucl Med, 1997. 38(1): p. 133-138.
50. Babich, J.W. and A.J. Fischman, Effect of "co-ligand" on the biodistribution of 99mTc-labeled hydrazino nicotinic acid derivatized chemotactic peptides. Nucl Med Biol, 1995. 22(1): p. 25-30.
51. Babich, J.W., et al., Comparison of the infection imaging properties of a 99mTc labeled chemotactic peptide with 111In IgG. Nucl Med Biol, 1995. 22(5): p. 643-648.
52. Babich, J.W., et al., Technetium-99m-labeled hydrazino nicotinamide derivatized chemotactic peptide analogs for imaging focal sites of bacterial infection. J Nucl Med, 1993. 34(11): p. 1964-1974.
53. Bangard, M., et al., Detection of somatostatin receptor-positive tumours using the new 99mTc-tricine-HYNIC-D-Phe1-Tyr3-octreotide: first results in patients and comparison with 111In-DTPA-D-Phe1-octreotide. Eur J Nucl Med, 2000. 27(6): p. 628-637.
54. Decristoforo, C., et al., Detection of somatostatin receptor-positive tumours using the new 99mTc-tricine-HYNIC-D-Phe1-Tyr3-octreotide: first results in patients and comparison with 111In-DTPA-D-Phe1-octreotide. Eur J Nucl Med, 2000. 27(10): p. 1580.
55. Decristoforo, C., et al., 99mTc-EDDA/HYNIC-TOC: a new 99mTc-labelled radiopharmaceutical for imaging somatostatin receptor-positive tumours: first clinical results and intra-patient comparison with 111In-labelled octreotide derivatives. Eur J Nucl Med, 2000. 27(9): p. 1318-1325.
56. Decristoforo, C., et al., 99mTc-HYNIC-[Tyr3]-octreotide for imaging somatostatin-receptor-positive tumors: Preclinical evaluation and comparison with 111In-octreotide. J Nucl Med, 2000. 41(6): p. 1114-1119.
57. Zhang, Y.M., et al., Influence of different chelators (HYNIC, MAG3 and DTPA) on tumor cell accumulation and mouse biodistribution of technetium-99m labeled to antisense DNA. Eur J Nucl Med, 2000. 27(11): p. 1700-1707.
58. Hnatowich, D.J., et al., Technetium-99m labeling of DNA oligonucleotides. J Nucl Med, 1995. 36(12): p. 2306-2314.
59. Laverman, P., et al., A novel method to label liposomes with 99mTc by the hydrazino nicotinyl derivative. J Nucl Med, 1999. 40(1): p. 192-197.
60. Abram, U. and R. Alberto, Technetium and rhenium - Coordination chemistry and nuclear medical applications. J Brazil Chem Soc, 2006. 17(8): p. 1486-1500.
61. Garcia-Garayoa, E., R. Schibli, and P.A. Schubiger, Peptides radiolabeled with Re-186/188 and Tc-99m as potential diagnostic and therapeutic agents. Nucl Sci Tech, 2007. 18(2): p. 88-100.
62. Alberto, R., et al., Mono-, bi-, or tridentate ligands? The labeling of peptides with 99mTc-carbonyls. Biopolymers, 2004. 76(4): p. 324-333.
63. Rhodes, B.A., Direct labeling of proteins with 99mTc. Nucl Med Biol, 1991. 18(7): p. 667-676.
64. Cooke, T., et al., The value of the human epidermal growth factor receptor-2 (HER2) as a prognostic marker. Eur J Cancer, 2001. 37 Suppl 1: p. S3-S10.
65. Leonard, D.S., et al., Anti-human epidermal growth factor receptor 2 monoclonal antibody therapy for breast cancer. Brit J Surg, 2002. 89(3): p. 262-271.
66. Lara, P.N., Jr., et al., HER-2/neu is overexpressed infrequently in patients with prostate carcinoma. Cancer, 2002. 94(10): p. 2584-2589.
67. Blend, M.J., et al., Labeling anti-HER2/neu monoclonal antibodies with 111In and 90Y using a bifunctional DTPA chelating agent. Cancer Biother Radio, 2003. 18(3): p. 355-363.
68. Garmestani, K., et al., A new and convenient method for purification of 86Y using a Sr(II) selective resin and comparison of biodistribution of 86Y and 111In labeled Herceptin. Nucl Med Biol, 2002. 29(5): p. 599-606.
69. Kobayashi, H., et al., Rapid accumulation and internalization of radiolabeled herceptin in an inflammatory breast cancer xenograft with vasculogenic mimicry predicted by the contrast-enhanced dynamic MRI with the macromolecular contrast agent G6-(1B4M-Gd)256. Cancer Res, 2002. 62(3): p. 860-866.
70. Palm, S., et al., Pharmacokinetics and biodistribution of 86Y-Trastuzumab for 90Y dosimetry in an ovarian carcinoma model: Correlative microPET and MRI. J Nucl Med, 2003. 44(7): p. 1148-1155.
71. Winberg, K.J., et al., Radiobromination of anti-HER2/neu/ErbB-2 monoclonal antibody using the p-isothiocyanatobenzene derivative of the [76Br]undecahydro-bromo-7,8-dicarba-nido-undecaborate(1-) ion. Nucl Med Biol, 2004. 31(4): p. 425-433.
72. Tang, Y., et al., Imaging of HER2/neu expression in BT-474 human breast cancer xenografts in athymic mice using [99mTc]-HYNIC-trastuzumab (Herceptin) Fab fragments. Nucl Med Commun, 2005. 26(5): p. 427-432.
73. Li, Y., et al., Cytotoxicity of human prostate cancer cell lines in vitro and induction of apoptosis using 213Bi-Herceptin alpha-conjugate. Cancer Lett, 2004. 205(2): p. 161-171.
74. Ballangrud, A.M., et al., Alpha-particle emitting atomic generator (Actinium-225)-labeled trastuzumab (herceptin) targeting of breast cancer spheroids: Efficacy versus HER2/neu expression. Clin Cancer Res, 2004. 10(13): p. 4489-4497.
75. Li, G., et al., The experimental study on the radioimmunotherapy of the nasopharyngeal carcinoma overexpressing HER2/neu in nude mice model with intratumoral injection of 188Re-herceptin. Nucl Med Biol, 2005. 32(1): p. 59-65.
76. Cho, H.S., et al., Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature, 2003. 421(6924): p. 756-760.
77. Weckbecker, G., et al., Opportunities in somatostatin research: Biological, chemical and therapeutic aspects. Nat Rev Drug Discov, 2003. 2(12): p. 999-1017.
78. Lister-James, J., B.R. Moyer, and T. Dean, Small peptides radiolabeled with 99mTc. Q J Nucl Med, 1996. 40(3): p. 221-233.
79. Okarvi, S.M., Peptide-based radiopharmaceuticals: Future tools for diagnostic imaging of cancers and other diseases. Med Res Rev, 2004. 24(3): p. 357-397.
80. Gandomkar, M., et al., Direct labelling of octreotide with 99mTc: Effect of different concentration of reducing agents and amount of sodium pertechnetate on radiolabelling efficiency. Appl Radiat Isotopes, 2003. 58(3): p. 361-364.
81. Langer, M. and A.G. Beck-Sickinger, Peptides as carrier for tumor diagnosis and treatment. Curr Med Chem, 2001. 1(1): p. 71-93.
82. Schmitt, A., et al., Differences in biodistribution between 99mTc-depreotide, 111In-DTPA-octreotide, and 177Lu-DOTA-Tyr3-octreotate in a small cell lung cancer animal model. Cancer Biother Radio, 2005. 20(2): p. 231-236.
83. Weiner, R.E. and M.L. Thakur, Radiolabeled peptides in the diagnosis and therapy of oncological diseases. Appl Radiat Isotopes, 2002. 57(5): p. 749-763.
84. Arano, Y., et al., Conventional and high-yield synthesis of DTPA-conjugated peptides: Application of a monoreactive DTPA to DTPA-D-Phe1-octreotide synthesis. Bioconjugate Chem, 1997. 8(3): p. 442-446.
85. Albert, R., et al., Direct synthesis of [DOTA-DPhe1]-octreotide and [DOTA-DPhe1,Tyr3]-octreotide (SMT487): Two conjugates for systemic delivery of radiotherapeutical nuclides to somatostatin receptor positive tumors in man. Bioorg Med Chem Lett, 1998. 8(10): p. 1207-1210.
86. Kopecky, M., et al., 99mTc demotate 1: biodistribution and elimination characteristics in rats. Nucl Med Commun, 2005. 26(6): p. 549-554.
87. Maina, T., et al., [99mTc]Demotate, a new 99mTc-based [Tyr3]octreotate analogue for the detection of somatostatin receptor-positive tumours: synthesis and preclinical results. Eur J Nucl Med Mol I, 2002. 29(6): p. 742-753.
88. Decristoforo, C., et al., 99mTc-Demotate 1: first data in tumour patients-results of a pilot/phase I study. Eur J Nucl Med Mol I, 2003. 30(9): p. 1211-1219.
89. Gabriel, M., et al., 99mTc-N4-[Tyr3]Octreotate versus 99mTc-EDDA/HYNIC-[Tyr3]Octreotide: An intrapatient comparison of two novel Technetium-99m labeled tracers for somatostatin receptor scintigraphy. Cancer Biother Radio, 2004. 19(1): p. 73-79.
90. Lee, T.W., et al., Convenient Solid-phase Synthesis of Tyr3-octreotide. Appl Radiat Isotopes, 1998. 49(12): p. 1581-1586.
91. Nikolopoulou, A., et al., Tetraamine-modified octreotide and octreotate: labeling with 99mTc and preclinical comparison in AR4-2J cells and AR4-2J tumor-bearing mice. J Pept Sci, 2006. 12(2): p. 124-131.
92. Edwards, W.B., et al., Generally applicable, convenient solid-phase synthesis and receptor affinities of octreotide analogs. J Med Chem, 1994. 37(22): p. 3749-3757.
93. Albericio, F., et al., Cyclization of disulfide-containing peptides in solid-phase synthesis. Int J Pept Protein Res, 1991. 37(5): p. 402-413.
94. Malesevic, M., et al., An improved method for the solution cyclization of peptides under pseudo-high dilution conditions. J Biotechnol, 2004. 112(1-2): p. 73-77.
95. Wu, Y.T., et al., Facile solid phase synthesis of octreotide analogs using p-carbosybenzaldehyde as a novel linker to anchor Fmoc-threoninol to solid phase resins. Tetrahedron Lett, 1998. 38: p. 1783-1784.
96. Sewald, N. and H.-D. Jakubke, Peptides: Chemistry and Biology. 2002: Wiley-VCH Verlag GmbH & Co. KGaA.
97. Hsieh, H.P., et al., Direct solid-phase synthesis of octreotide conjugates: Precursors for use as tumor-targeted radiopharmaceuticals. Bioorgan Med Chem, 1999. 7(9): p. 1797-1803.
98. Volkmer-Engert, R., C. Landgraf, and J. Schneider-Mergener, Charcoal surface-assisted catalysis of intramolecular disulfide bond formation in peptides. J Pept Res, 1998. 51(5): p. 365-369.
99. Prasad, V., S. Fetscher, and R.P. Baum, Changing role of somatostatin receptor targeted drugs in NET: Nuclear Medicine's view. J Pharm Pharm Sci, 2007. 10(2): p. 321s-337s.
100. Peer, D., et al., Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol, 2007. 2(12): p. 751-760.
101. Hawkins, M.J., P. Soon-Shiong, and N. Desai, Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliver Rev, 2008. 60(8): p. 876-885.
102. Wang, G. and H. Uludag, Recent developments in nanoparticle-based drug delivery and targeting systems with emphasis on protein-based nanoparticles. Expert Opin Drug Del, 2008. 5(5): p. 499-515.
103. Jahanshahi, M. and Z. Babaei, Protein nanoparticle: A unique system as drug delivery vehicles. Afr J Biotechnol, 2008. 7(25): p. 4926-4934.
104. Elsadek, B. and F. Kratz, Impact of albumin on drug delivery - New applications on the horizon. J Control Release, 2012. 157(1): p. 4-28.
105. Kratz, F. and B. Elsadek, Clinical impact of serum proteins on drug delivery. J Control Release, 2012. 161(2): p. 429-445.
106. Peters, T., Jr., Serum Albumin. Adv Protein Chem, 1985. 37: p. 161-245.
107. Kratz, F., Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. J Control Release, 2008. 132(3): p. 171-183.
108. Fang, J., H. Nakamura, and H. Maeda, The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliver Rev, 2011. 63(3): p. 136-151.
109. Huang, F.Y., et al., Imaging, autoradiography, and biodistribution of 188Re-labeled PEGylated nanoliposome in orthotopic glioma bearing rat model. Cancer Biother Radiopharm, 2011. 26(6): p. 717-725.
110. Anhorn, M.G., H.C. Mahler, and K. Langer, Freeze drying of human serum albumin (HSA) nanoparticles with different excipients. Int J Pharm, 2008. 363(1-2): p. 162-169.
111. Storp, B., et al., Albumin nanoparticles with predictable size by desolvation procedure. J Microencapsul, 2012. 29(2): p. 138-146.
112. Langer, K., et al., Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int J Pharm, 2003. 257(1-2): p. 169-180.
113. Langer, K., et al., Human serum albumin (HSA) nanoparticles: Reproducibility of preparation process and kinetics of enzymatic degradation. Int J Pharm, 2008. 347(1-2): p. 109-117.
114. Chen, W.J., et al., Direct 99mTc labeling of Herceptin (trastuzumab) by 99mTc(I) tricarbonyl ion. Appl Radiat Isotopes, 2008. 66(3): p. 340-345.
115. Lo, J.M., et al., Labeling of human serum albumin with 105Rh-cysteine complexes. Appl Radiat Isotopes, 1990. 41(1): p. 63-67.
116. Wang, W., et al., Human serum albumin (HSA) nanoparticles stabilized with intermolecular disulfide bonds. Chem Commun, 2013. 49(22): p. 2234-2236.
117. Carter, D.C. and J.X. Ho, Structure of serum albumin. Adv Protein Chem, 1994. 45: p. 153-203.
118. Chi, E.Y., et al., Physical stability of proteins in aqueous solution: Mechanism and driving forces in nonnative protein aggregation. Pharm Res, 2003. 20(9): p. 1325-1336.
119. Liu, S., Radiolabeled multimeric cyclic RGD peptides as integrin avb3 targeted radiotracers for tumor imaging. Mol Pharm, 2006. 3(5): p. 472-487.
120. Liu, S., et al., Impact of PKM linkers on biodistribution characteristics of the 99mTc-labeled cyclic RGDfK dimer. Bioconjugate Chem, 2006. 17(6): p. 1499-1507.
121. Jiang, S., et al., Preparation, characterization, and antitumor activities of folate-decorated docetaxel-loaded human serum albumin nanoparticles. Drug Deliv, 2014: p. 1-8.
122. Rollett, A., et al., Folic acid-functionalized human serum albumin nanocapsules for targeted drug delivery to chronically activated macrophages. Int J Pharm, 2012. 427(2): p. 460-466.
123. Ulbrich, K., et al., Interaction of folate-conjugated human serum albumin (HSA) nanoparticles with tumour cells. Int J Pharm, 2011. 406(1-2): p. 128-134.