簡易檢索 / 詳目顯示

研究生: 黃瀞儀
Huang, Ching I
論文名稱: 演化動力學的數值模擬
Evolutionary dynamics in silico: from origin of life to biodiversity in ecology
指導教授: 林秀豪
Lin, Hsiu Hau
口試委員: 陳宣毅
陳柏中
陳俊仲
張正宏
吳國安
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 99
中文關鍵詞: 剪刀-石頭-布模型生物多樣性生態穩定性空間網路結構
外文關鍵詞: quasispecies, error threshold, replicator equations, finite populations, rock-paper-scissors game, ecological stability, spatial games
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 演化動力學為我們提供的數學框架去探索不同系統中隨時間的變化以及其可能的原因,如理論生態學、種群遺傳學,流行病學,免疫學等。演化動力學的基本元素是繁殖,天擇和突變。討論天擇和突變的研究課題中,本論文只探討及解決其中兩個重要問題:生命的起源和生態系統的生物多樣性。從準種方程式出發,描述天擇及突變過程中基因組頻率隨時間的變化,我們發現適者生存的演化優勢存在的條件和突變率、基因組長度和相對競爭力的關係,此關係式被稱為突變臨界門檻。將這個概念及數學技巧應用到更複雜的競爭關係中,我們得到一個通用相圖,可以解釋不同條件下的突變臨界門檻。接下來,我們忽略突變只考慮頻率依存天擇下的演化動力學。利用能模擬繁殖方程式中人口動力學的"環境-個體-取代"演化演算法,個體間交互作用的隨機性被自然的涵蓋在演化演算法中。計算結果顯示不同空間網路結構的廣義剪刀-石頭-布模型仍具有相同的滅絕模式。滅絕相圖中,人口動態可被區分為兩個不同的相以及一個介於兩相相變中間的臨界點。因此,滅絕模式的相圖可以被看作是生態系統中生態穩定性(生物多樣性)的重要指標。


    Evolutionary dynamics provides us the mathematical framework to explore the dynamics of evolution in diverse research topics, such as theoretical ecology, population genetics, epidemiology, immunology and etc. The basic building blocks of evolutionary dynamics are reproduction, selection and mutation. To discuss the basic properties and research topics on selection and mutation, we only address two important questions about the origin of life and the biodiversity in ecological systems in the thesis. Start from the quasispecies equations which describes the dynamics of genome frequency under mutation-selection processes, an important relationship among mutation rate, genome length and relative fitness called error threshold is discovered to maintain the evolutionary advantage of the fittest genome in the single-peak fitness landscape. Apply the idea and the techniques to the peak-mesa-background fitness landscape, the universal phase diagram is found to explain the error threshold under different conditions. Next, we switch the focus to the evolutionary dynamics in population level by considering the frequency-dependent selection without mutation in replicator equations. The Reference-Gamble-Birth (RGB) algorithm, which has the same dynamics as replicator equations in infinite population limit, is introduced to handle the stochastic interactions in agent-based simulation. The numerical results of RGB algorithm shows that the population dynamics shares the same universal extinction patterns in generalized rock-paper-scissors communities under different types of spatial networks. The universal extinction patterns show that the population dynamics can be divided into two phases with a critical point at the phase transition, and therefore the extinction patterns can be viewed as the indicator of ecological stability (biodiversity) for ecological systems.

    1 Introduction 1 2 Evolutionary game theory 3 2.1 Fitness landscape and replicator equations 3 2.2 Payoff matrix and frequency-dependent selection 6 2.3 Stability of strategy 10 3 Error threshold 13 3.1 Eigen model: the quasispecies equations 15 3.2 S-wave decomposition 18 3.3 Variational ansatz 20 3.4 Example: peak-mesa fitness landscape 27 4 Reference-Gamble-Birth algorithm 33 4.1 Moran process 34 4.2 Replicator dynamics in RGB algorithm 35 5 Universal extinction pattern 41 5.1 Rock-paper-scissors game in infinite populations 42 5.2 Ecological stability in fully-connected networks 44 5.3 Spatial games: two-dimensional networks 47 5.4 Global payoff matrix and universal scaling 47 5.5 Spatial and temporal correlations on 2D grid 49 6 Discussion 53 References 74 Supplementary information 75 S1 S-wave decomposition 76 S2 Exact diagonalization 79 S2.1 Single-peak fitness landscape 80 S2.2 Peak-mesa fitness landscape 82 S3 Reference-Gamble-Birth algorithm 83 S3.1 Fully-connected networks 84 S3.2 Two-dimensional networks 88 

    [1] Taylor, P. D. & Jonker, L. B., Evolutionary stable strategies and game dynamics, Math. Biosci., 40, 145–156 (1978).
    [2] Zeeman, E. C. Population dynamics from game theory. In Global Theory of Dynamical Systems, vol. 819, 471–497 (Springer Berlin Heidelberg, 1980).
    [3] Smith, J. M., Evolution and the Theory of Games (Cambridge University Press, 1982).
    [4] Weibull, J. W., Evolutionary Game Theory (MIT Press, 1997).
    [5] Hofbauer, J. & Sigmund, K., Evolutionary Games and Population Dynamics (Cambridge University Press, 1998).
    [6] Nowak, M. A., Evolutionary Dynamics (Harvard University Press, 2006).
    [7] Von Neumann, J. & Morgenstern, O., Theory of Games and Economic Behavior (Princeton University Press, 1947).
    [8] Smith, J. M. & Price, G. R., Logic of animal conflict, Nature, 246, 15–18 (1973).
    [9] Nash, J. F., Equilibrium points in n-person games, Proc. Natl. Acad. Sci. U.S.A., 36, 48–49 (1950).
    [10] Haldane, J. B. S., A mathematical theory of natural and artificial selection., Biol. Rev., 1, 158–163 (1924).
    [11] Wright, S., The roles of mutation, inbreeding, crossbreeding and selection in evolution, Proceedings of the Sixth International Congress of Genetics, 1, 356–66 (1932).
    [12] Doebeli, M. & Hauert, C., Models of cooperation based on the Prisoner’s Dilemma and the Snowdrift game, Ecol. Lett., 8, 748–766 (2005).
    [13] Eigen, M., Selforganization of matter and evolution of biological macromolecules, Naturwiss., 58, 465 (1971).
    [14] Crow, J. F. & Kimura, M., An Introduction to Population Genetics Theory (Harper Row, New York, 1970).
    [15] Leuthäusser, I., Statistical mechanics of Eigen’s evolution model, J. Stat. Phys., 48, 343 (1987).
    [16] Domingo, E., Webster, R. & Holland, J. J., Origin and Evolution of Viruses (Academic, San Dieago, 1999).
    [17] Domingo, E., Biebricher, C., Eigen, M. & Holland, J. J., Quasispecies and RNA Virus Evolution: Principles and Consequences (Landes Bioscience, Austin, TX, 2001).
    [18] Nowak, M., What is a quasispecies?, Trends Ecol. Evol., 7, 118 (1992).
    [19] Nowak, M. A., Five rules for the evolution of cooperation, Science, 314, 1560–1563 (2006).
    [20] Eigen, M. & Schuster, P., A principle of natural self-organization. Part A : emergence of the hypercycle, Naturwiss., 64, 541 (1977).
    [21] Smith, J. M. & Szathmary, E., The Major Transitions in Evolution (W. H. Freeman, Oxford, 1995).
    [22] Galluccio, S., Exact solution of the quasispecies model in a sharply peaked fitness landscape, Phys. Rev. E, 56, 4526 (1997).
    [23] Saakian, D. B. & Hu, C. K., Eigen model as a quantum spin chain: exact dynamics, Phys. Rev. E, 69, 021913 (2004)
    [24] Saakian, D. B. & Hu, C. K., Solvable biological evolution model with a parallel mutation-selection scheme, Phys. Rev. E, 69, 046121 (2004).
    [25] Saakian, D. B. & Hu, C. K., Exact solution of the Eigen model with general fitness functions and degradation rates, Proc. Natl. Acad. Sci. U.S.A., 103, 4935 (2006).
    [26] Schuster, P. & Sigmund, K., Dynamics of Evolutionary Optimization, Ber. Bunsen Ges. Phys. Chem., 89, 668 (1985).
    [27] Leuthäusser, I., An exact correspondence between Eigen’s evolution model and a two-dimensional Ising system, J. Chem. Phys., 84, 1884 (1986).
    [28] Nowak, M. & Schuster, P., Error thresholds of replication in finite populations. Mutation frequencies and the onset of Muller’s ratchet, J. Theor. Biol., 137, 375 (1989).
    [29] Tarazona, P., Error thresholds for molecular quasispecies as phase transitions: from simple landscapes to spin-glass models, Phys. Rev. A, 45, 6038 (1992).
    [30] Baake, E., Baake, M. & Wagner, H., Ising quantum chain is equivalent to a model of biological evolution, Phys. Rev. Lett., 78, 559 (1997).
    [31] Eigen, M., Natural selection: a phase transition?, Biophys. Chem., 85, 101 (2000).
    [32] Solé, R. V. & Deisboeck, T. S., An error catastrophe in cancer?, J. Theor. Biol., 228, 47 (2004).
    [33] Greaves, M. & Maley, C. C., Clonal evolution in cancer, Nature, 481, 306 (2012).
    [34] Lengauer, C., Kinzler, K. W. & Vogelstein, B., Genetic instabilities in human cancers, Nature, 396, 643 (1998)
    [35] Fox, E. J. & Loeb, L. A., Human cancers express mutator phenotypes: origin, consequences and targeting, Seminars in Cancer Biology, 20, 353 (2010).
    [36] Loeb, L. A., Human cancers express mutator phenotypes: origin, consequences and targeting, Nat. Rev. Cancer, 11, 450 (2011).
    [37] Drake, J., Rates of spontaneous mutation among RNA viruses, Proc. Natl. Acad. Sci. U.S.A., 90, 4171 (1993).
    [38] Dominigo, E. et al., Basic concepts in RNA virus evolution, J. Fed. Am. Soc. Exp. Biol., 10, 859 (1996).
    [39] Saakian,D. B., Munoz, E., Hu, C. K. & Deem, M. W., Quasispecies theory for multiple-peak fitness landscapes, Phys. Rev. E, 73, 041913 (2006).
    [40] Sardanyés, J., Elena, S. F. & Solé, R. V., Simple quasispecies models for the survival-of-the-flattest effect: the role of space. J. Theor. Biol., 250, 560 (2008).
    [41] McCaskill, J. S. & Altemeyer, S., Error threshold for spatially resolved evolution in the quasispecies model, Phys. Rev. Lett., 86, 5819 (2001).
    [42] Toyabe, S. & Sano, M., Spatial suppression of error catastrophe in a growing pattern, Physica D, 230, 1 (2005).
    [43] Sardanyes, J. & Elena, S. F., Quasispecies spatial models for RNA viruses with different replication modes and infection strategies, PLoS One, 6, e24884 (2011).
    [44] Sardanyés, J. et al., Variability in mutational fitness effects prevents full lethal transitions in large quasispecies populations, Sci. Rep., 4 4625 (2014).
    [45] Wolff, A. & Krug, J., Robustness and epistasis in mutation-selection models, Phys. Biol., 6, 036007 (2009).
    [46] Schuster, P. & Swetina, J., Stationary mutant distributions and evolutionary optimization, Bull. Math. Biol. 50, 635 (1988).
    [47] Hamming, R. W., Coding and Information Theorey (Prentice Hall Inc., Englewood Cliffs, NJ, 1980).
    [48] Foster, D. & Young, P., Stochastic evolutionary game dynamics, Theor. Popul. Biol. (1990).
    [49] Durrett, R. & Levin, S., The importance of being discrete (and spatial), Theor. Popul. Biol., 46, 363–394 (1994).
    [50] Cressman, R. & Vickers, G. T., Spatial and density effects in evolutionary game theory, J. Theor. Biol., 184, 359–369 (1997).
    [51] Cabrales, A., Stochastic replicator dynamics, Int. Econ. Rev., 41, 451–481 (2000).
    [52] Corradi, V. & Sarin, R., Continuous approximations of stochastic evolutionary game dynamics, J. Econ. Theor., 94, 163–191 (2000).
    [53] Taylor, C., Fudenberg, D., Sasaki, A. & Nowak, M., Evolutionary game dynamics in finite populations, Bull. Math. Biol., 66, 1621–1644 (2004).
    [54] Imhof, L. A., The long-run behavior of the stochastic replicator dynamics, Ann. Appl. Probab., 15, 1019–1045 (2005).
    [55] Lieberman, E., Hauert, C. & Nowak, M. A., Evolutionary dynamics on graphs, Nature, 433, 312–316 (2005).
    [56] May, R. M., Network structure and the biology of populations, Trends Ecol. Evol., 21, 394–399 (2006).
    [57] Ohtsuki, H. & Nowak, M. A., The replicator equation on graphs, J. Theor. Biol., 243, 86–97 (2006).
    [58] Traulsen, A., Pacheco, J. M. & Imhof, L. A., Stochasticity and evolutionary stability, Phys. Rev. E, 74, 021905 (2006).
    [59] Traulsen, A., Claussen, J. C. & Hauert, C., Coevolutionary dynamics in large, but finite populations, Phys. Rev. E, 74 (2006).
    [60] Szabó, G. & Fáth, G., Evolutionary games on graphs, Physics Reports, 446, 97–216 (2007).
    [61] Altrock, P. M. & Traulsen, A., Deterministic evolutionary game dynamics in finite populations, Phys. Rev. E, 80 (2009).
    [62] Nathanson, C. G., Tarnita, C. E. & Nowak, M. A., Calculating evolutionary dynamics in structured populations, PLOS Comput. Biol., 5 (2009).
    [63] Roca, C. P., Cuesta, J. A. & Sánchez, A., Evolutionary game theory: Temporal and spatial effects beyond replicator dynamics, Phys. Life Rev., 6, 208–249 (2009).
    [64] Tarnita, C. E., Antal, T., Ohtsuki, H. & Nowak, M. A., Evolutionary dynamics in set structured populations, Proc. Natl. Acad. Sci., 106, 8601–8604 (2009).
    [65] So, K. H. Z., Ohtsuki, H. & Kato, T., Spatial effect on stochastic dynamics of bistable evolutionary games, J. Stat. Mech. Theor. Exp., 2014 (2014).
    [66] Moran, P. A. P., Random processes in genetics, Math. Proc. Camb. Phil. Soc., 54, 60–71 (1958).
    [67] Moran, P., The Statistical Processes of Evolutionary Theory (Clarendon Press, 1962).
    [68] Hofbauer, J. & Sigmund, K., Evolutionary game dynamics, Bull. Am. Math. Soc., 40, 479–519 (2003).
    [69] Traulsen, A., Pacheco, J. M. & Nowak, M. A., Pairwise comparison and selection temperature in evolutionary game dynamics, J. Theor. Biol., 246, 522 529 (2007).
    [70] May, R., Stability and Complexity in Model Ecosystems (Princeton University Press, 2001).
    [71] Maynard-Smith, J., Models in Ecology (Cambridge University Press, 1978).
    [72] Michod, R., Darwinian Dynamics: Evolutionary Transitions in Fitness and Individuality (Princeton University Press, 2000).
    [73] Neal, D., Introduction to Population Biology (Cambridge University Press, 2004).
    [74] Solé, R. & Bascompte, J., Self-Organization in Complex Ecosystems (Princeton University Press, 2012).
    [75] Drossel, B., Biological evolution and statistical physics, Adv. Phys., 50, 209 295 (2001).
    [76] Frean, M. & Abraham, E., Rock-scissors-paper and the survival of the weakest, Proc. R. Soc. Lond. B, 268, 1323–1327 (2001).
    [77] Czárán, T. L., Hoekstra, R. F. & Pagie, L., Chemical warfare between microbes promotes biodiversity, Proc. Natl. Acad. Sci. U.S.A., 99, 786–790 (2002).
    [78] Ifti, M. & Bergersen, B., Survival and extinction in cyclic and neutral three-species systems, Eur. Phys. J. E, 10, 241–248 (2003).
    [79] Nowak, M. A. & Sigmund, K., Evolutionary dynamics of biological games, Science, 303, 793–799 (2004).
    [80] Reichenbach, T., Mobilia, M. & Frey, E., Coexistence versus extinction in the stochastic cyclic Lotka-Volterra model, Phys. Rev. E, 74 (2006).
    [81] West, S. A., Griffin, A. S., Gardner, A. & Diggle, S. P., Social evolution theory for microorganisms, Nat. Rev. Microbiol., 4, 597–607 (2006).
    [82] Reichenbach, T., Mobilia, M. & Frey, E., Noise and correlations in a spatial population model with cyclic competition, Phys. Rev. Lett., 99, 238105 (2007).
    [83] Reichenbach, T., Mobilia, M. & Frey, E., Mobility promotes and jeopardizes biodiversity in rock-paper-scissors games, Nature, 448, 1046–1049 (2007).
    [84] Peltomäki, M. & Alava, M., Three- and four-state rock-paper-scissors games with diffusion, Phys. Rev. E, 78 (2008).
    [85] Reichenbach, T., Mobilia, M. & Frey, E., Self-organization of mobile populations in cyclic competition, J. Theor. Biol., 254, 368–383 (2008).
    [86] Claussen, J. C. & Traulsen, A., Cyclic dominance and biodiversity in well-mixed populations, Phys. Rev. Lett., 100 (2008).
    [87] He, Q., Mobilia, M. & Täuber, U. C., Spatial rock-paper-scissors models with inhomogeneous reaction rates, Phys. Rev. E, 82, 051909 (2010).
    [88] Shi, H., Wang, W.-X., Yang, R. & Lai, Y.-C., Basins of attraction for species extinction and coexistence in spatial rock-paper-scissors games, Phys. Rev. E, 81 (2010).
    [89] Venkat, S. & Pleimling, M., Mobility and asymmetry effects in one-dimensional rock-paper-scissors games, Phys. Rev. E, 81 (2010).
    [90] Jiang, L.-L., Zhou, T., Perc, M. & Wang, B.-H., Effects of competition on pattern formation in the rock-paper-scissors game, Phys. Rev. E, 84 (2011).
    [91] Adamson, M. W. & Morozov, A. Y., Revising the Role of Species Mobility in Maintaining Biodiversity in Communities with Cyclic Competition, Bull. Math. Biol., 74, 2004–2031 (2012).
    [92] Lamouroux, D., Eule, S., Geisel, T. & Nagler, J., Discriminating the effects of spatial extent and population size in cyclic competition among species, Phys. Rev. E, 86 (2012).
    [93] Rulands, S., Zielinski, A. & Frey, E., Global attractors and extinction dynamics of cyclically competing species, Phys. Rev. E, 87 (2013).
    [94] Schreiber, S. J. & Killingback, T. P., Spatial heterogeneity promotes coexistence of rock-paper-scissors metacommunities, Theor. Popul. Biol., 86, 1–11 (2013).
    [95] Laird, R. A., Population interaction structure and the coexistence of bacterial strains playing ‘rock-paper-scissors’, Oikos, 123, 472–480 (2014).
    [96] Szczesny, B., Mobilia, M. & Rucklidge, A. M., Characterization of spiraling patterns in spatial rock-paper-scissors games, Phys. Rev. E, 90 (2014).
    [97] Jackson, J. B. C. & Buss, L., Alleopathy and spatial competition among coral reef invertebrates, Proc. Natl. Acad. Sci., 72, 5160–5163 (1975).
    [98] Sinervo, B. & Lively, C. M., The rock-paper-scissors game and the evolution of alternative male strategies, Nature, 380, 240–243 (1996).
    [99] Kerr, B., Riley, M., Feldman, M. W. & Bohannan, B. J. M., Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors, Nature, 418, 171– 174 (2002).
    [100] Kirkup, B. C. & Riley, M. A., Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo, Nature, 428, 412–414 (2004).
    [101] Weber, M. F., Poxleitner, G., Hebisch, E., Frey, E. & Opitz, M., Chemical warfare and survival strategies in bacterial range expansions, J. R. Soc. Interface, 11, 20140172 (2014).
    [102] Gilg, O., Hanski, I. & Sittler, B., Cyclic dynamics in a simple vertebrate predator-prey community, Science, 302, 866–868 (2003).
    [103] Lankau, R. A. & Strauss, S. Y., Mutual feedbacks maintain both genetic and species diversity in a plant community, Science, 317, 1561–1563 (2007).
    [104] Cameron, D. D., White, A. & Antonovics, J., Parasite-grass-forb interactions and rock-paper-scissor dynamics: predicting the effects of the parasitic plant Rhinanthus minor on host plant communities, J. Ecol., 97, 1311–1319 (2009).
    [105] Claussen, J. C. & Traulsen, A., Cyclic dominance and biodiversity in well-mixed populations, Phys. Rev. Lett., 100, 058104 (2008).
    [106] Frey, E., Evolutionary game theory: Theoretical concepts and applications to microbial communities, Physica A, 389, 4265–4298 (2010).
    [107] West, G. B., Brown, J. H. & Enquist, B. J., A general model for the origin of allometric scaling laws in biology, Science, 276, 122–126 (1997).
    [108] Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B., Toward a metabolic theory of ecology, Ecology, 85, 1771–1789 (2004).
    [109] Savage, V. M., Gillooly, J. F., Brown, J. H., West, G. B. & Charnov, E. L., Effects of body size and temperature on population growth, Am. Nat., 163, 429– 441 (2004).
    [110] Pacheco, J. M., Santos, F. C. & Dingli, D., The ecology of cancer from an evolutionary game theory perspective, Interface Focus, 4, 20140019 (2014).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE