研究生: |
陳 瑀 Yu Chen |
---|---|
論文名稱: |
掺雜鋁原子氧化鋅奈米牆狀結構的成長及其性質之研究 Growth and Properties of Al-Doped ZnO Nanowalls |
指導教授: |
陳力俊
Lih Juann Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 65 |
中文關鍵詞: | 氧化鋅 、鋁 、水溶液化學合成 、牆狀結構 、奈米 、氣體感測 |
外文關鍵詞: | ZnO, Al-doped, aqueous chemical solution method, nanowalls, nano, gas sensing |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來氧化鋅在光學、電性和感測方面的特殊性質受到廣泛的重視,尤其在奈米領域,高比表面積的結構增強了氧化鋅的感測效應。
本論文探討經由水溶液化學法,大量製備摻雜鋁原子的氧化鋅奈米牆狀結構。鋁基板對牆狀結構的成長具有很重要的影響,在其他的基板上,都只能觀察到奈米棒狀結構。而經由穿透式電子顯微鏡的觀察,確認了牆狀結構中鋁的原子百分比平均含量高達14 %。在製程中,透過控制玻璃基板上蒸鍍鋁薄膜的厚度及水溶液的反應時間,能夠有效的影響牆狀結構的高度。此外,經由調整水溶液中反應物的濃度、比例及反應的溫度,也能夠系統化控制奈米牆狀結構的密度,進而達到控制比表面積大小的目的。本研究並以二氧化氮氣體作為感測對象,展示了表面積對氣體感測的影響,並以奈米牆狀及奈米棒狀混合結構的感測元件,成功的展示出比棒狀結構更高的靈敏度,而且能長時間在高濃度的環境下,持續吸附氣體而不飽和,且同時將牆狀結構的偵測極限從100 ppm降低到1 ppm。
研究中針對一系列的退火溫度和時間影響,有詳細的探討。經由400 ℃兩小時的熱處理,能夠使材料中的原子重新排列成較完美的晶體結構。實驗證明,退火時間對結構中缺陷消除的影響較退火溫度更大,而高溫且長時間的熱處理最能夠有效的消除晶體結構中的缺陷。透過穿透式電子顯微鏡的觀察,能夠清楚發現晶粒尺寸的增加,以及缺陷的消除。
ZnO has been widely investigated for its unique properties and versatile applications. This study focuses on the controlled growth and the properties of Al-doped ZnO nanowalls prepared by aqueous chemical solution method.
Large area, well aligned Al-doped ZnO nanowalls were synthesized. The Al atoms are uniformly doped into ZnO nanowalls to an atomic concentration of about 14 % after 400 ℃ annealing for 2 hr. The unique nanowalls structure was only found on Al substrates. The height of the nanowalls can be controlled by adjusting the reaction time and the amount of Al source. The density was influenced by the growth temperature or the ratio and the concentration of the reactants. As a result, the surface area can be well controlled. The influences on the growth of Al-doped ZnO nanowalls at different annealing temperature and time were investigated. Al atoms in ZnO nanowalls become uniformly doped in the nanowalls with an increasing grain size after the heat treatment.
The gas sensing properties to NO2 were demonstrated in this work. A higher sensitivity for the denser structure was observed. A mixed structure of Al-doped ZnO nanowalls and pure ZnO nanorods was found to possess a lower detection limit than nanowalls and higher sensitivity than nanorods. In addition, the mixed structure was not saturated for absorption for 10 min in 100 ppm NO2 environment.
Chapter 1
1.1 A. P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science 271, 933-937 (1996).
1.2 C. B. Murray, C. R. Kagan and M. G. Bawendi, “Synthesis and Characterization of Monodisperse Nanocrystals and Close-packed Nanocrystal Assemblies,” Annu. Rev. Mater. Sci. 30, 545-610 (2000).
1.3 J. M. Krans, J. M. van Rutenbeek, V. V. Fisun, I. K. Yanson and L. J. deJongh, “The Signature of Conductance Quantization in Metallic Point Contacts,” Nature 375, 767-769 (1995).
1.4 K. K. Likharev and T. Claeson, “Single Electronics,” Sci. Am. 266, 80-85 (1992).
1.5 G. Markovich, G. P. Collier, S. E. Henrichs, F. Remacle, R. D. Levine and J. R. Heath, “Architectonic Quantum Dot Solids,” Acc. Chem. Res. 32, 415-423 (1999).
1.6 M. Narihiro, G. Yusa, Y. Nakamura, T. Noda and H. Sakaki, “Resonant Tunneling of Electrons via 20 nm Scale InAs Quantum Dot and Magnetotunneling Spectroscopy of Its Electronic States,” Appl. Phys. Lett. 70, 105-107 (1996).
1.7 J. Chen, M. A. Reed, A. M. Rawlett and J. M. Tour, “Large On-off Ratios and Negative Differential Resistance in a Molecular Electronic Device,” Science 286, 1550-1552 (1999).
1.8 C. Papadopoulos, A. Rakitin, J. Li, A. S. Vedeneev and J. M. Xu, “Electronic Transport in Y-junction Carbon Nanotubes,” Phys. Rev. Lett. 85, 3476-3479 (2000).
1.9 M. T. Björk, B. J. Ohlsson, C. Thelander, A. I. Persson, K. Deppert, L. R. Wallenberg and L. Samuelson, “Nanowire Resonant Tunneling Diodes,” Appl. Phys. Lett. 81, 4458-4460 (2002).
1.10 J. D. Meindl, Q. Chen and J. A Davis, “Limits on Silicon Nanoelectronics for Terascale Integration,” Science 293, 2044-2049 (2001).
1.11 R. Dagani, “Building for the Bottom Up,” Chem. Eng. News 78, 27-32 (2000).
1.12 J. R. Heath, P. J. Kuekes, G. S. Snider and R. S. Williams, “A Defect-tolerant Computer Architecture: Opportunities for Nanotechnology,” Science 280, 1716-1721 (1998).
1.13 F. Fang, D. X. Zhao, J. Y. Zhang, D. Z. Shen, Y. M. Lu, X. W. Fan, B. H. Li1 and X. H. Wang, “Growth of Well-aligned ZnO Nanowire Arrays on Si Substrate,” Nanotechnology 18, 235604-235608 (2007).
1.14 D. Wang, X. Chu and M. Gong, “Hydrothermal Growth of ZnO Nanoscrewdrivers and Their Gas Sensing Properties,” Nanotechnology 18, 18185601-18185604 (2007).
1.15 X. Y. Kong and Z. L. Wang, “Spontaneous Polarization-induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts,” Nano Lett. 3, 1625-1631 (2003).
1.16 X. Y. Kong, Y. Ding, R. Yang and Z. L. Wang, “Single-crystal Nanorings Formed by Epitaxial Self-coiling of Polar Nanobelts,” Science 303, 1348-1351 (2004).
1.17 B. A. Buchine, W. L. Hughes, F. L. Degertekin and Z. L. Wang, “Bulk Acoustic Resonator Based on Piezoelectric ZnO Belts,” Nano Lett. 6, 1155-1159 (2006).
1.18 P. X. Gao, Y. Ding, W. Mai, W. L. Hughes, C. Lao and Z. L. Wang, “Conversion of Zinc Oxide Nanobelts into Superlattice-structured Nanohelices,” Science 309, 1700-1704 (2005).
1.19 Y. C. Chang and L. J. Chen, “ZnO Nanoneedles with Enhanced and Sharp Ultraviolet Cathodoluminescence Peak,” J. Phys. Chem. C 111, 1268-1272 (2007).
1.20 Y. Tak and K. Yong, “Controlled Growth of Well-aligned ZnO Nanorod Array Using a Novel Solution Method,” J. Phys. Chem. B 109, 19263-19269 (2005).
1.21 Z. L. Wang “The New Field of Nanopiezotronics,” Mater. Today 10, 20-28 (2007).
1.22 J. Zhou, N. Xu and Z. L. Wang, “Dissolving Behavior and Stability of ZnO Wires in Biofluids: A Study on Biodegradability and Biocompatibility of ZnO Nanostructures,” Adv. Mater. 18, 2432-2435 (2006).
1.23 Z. L. Wang,” Zinc Oxide Nanostructures: Growth, Properties and Applications,” J. Phys.: Condens. Matter 16, 829–858 (2004).
1.24 L. Vayssieres, K. Keis, S.-E. Lindquist and A. Hagfeldt, “Purpose-built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO,” J. Phys. Chem. B 105, 3350-3352 (2001).
1.25 J.-H. Park and J.-G. Park, “Synthesis of Ultrawide ZnO Nanosheets,” Current Appl. Phys. 6, 1020-1023 (2006).
1.26 P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He and H.-J. Choi, “Controlled Growth of ZnO Nanowires and Their Optical Properties” Adv. Mater. 12, 323-331 (2002).
1.27 X. Y. Kongand and Z. L. Wang, “Polar-surface Dominated ZnO Nanobelts and the Electrostatic Energy Induced Nanohelixes, Nanosprings, and Nanospirals,” Appl. Phys. Lett. 84, 975-977 (2004).
1.28 H. T. Ng, B. Chen, J. Li, J. Han and M. Meyyappan, “Optical Properties of Single-crystalline ZnO Nanowires on M-sapphire,” Appl. Phys. Lett. 82, 2023-2025 (2003).
1.29 T.-W. Kim, T. Kawazoe, S. Yamazaki, M. Ohtsu and T. Sekiguchi, “Low-temperature Orientation-selective Growth and Ultraviolet Emission of Single-crystal ZnO Nanowires,” Appl. Phys. Lett. 84, 3358-3360 (2004).
1.30 D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi and S. J. Xu, “Different Origins of Visible Luminescence in ZnO Nanostructures Fabricated by the Chemical and Evaporation Methods,” Appl. Phys. Lett. 85, 1601-1603 (2004).
1.31 W. Lee, M.-C. Jeong and J.-M. Myoung, “Evolution of the Morphology and Optical Properties of ZnO Nanowires during Catalyst-free Growth by Thermal Evaporation,” Nanotechnology 15, 1441-1445 (2004).
1.32 Y. Gu, I. L. Kuskovsky, M. Yin, S. O’Brien and G. G. Neumark, “Quantum Confinement in ZnO Nanorods,” Appl. Phys. Lett. 85, 3833-3835 (2004).
1.33 I. Shalish, H. Temkin and V. Narayanamurti, “Size-dependent Surface Luminescence in ZnO Nanowires,” Phys. Rev. B. 69, 245401 (2004).
1.34 X. Wang, Y. Ding, C. J. Summers and Z. L. Wang, “Large-scale Synthesis of Six-nanometer-wide ZnO Nanobelts,” J. Phys. Chem. B 108, 8773-8777 (2004).
1.35 M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, “Room-temperature Ultraviolet Nanowire Nanolasers,” Science 292, 1897-1899 (2001).
1.36 C. Liu, J. A. Zapien, Y. Yao, X. Meng, C. S. Lee, S. Fan, Y. Lifshitz and S. T. Lee, “High-density, Ordered Ultraviolet Light-emitting ZnO Nanowire Arrays,” Adv.Mater. 15, 838-841 (2003).
1.37 Z. L. Wang “ZnO–nanostructures, Defects, and Devices,” Mater. Today 10, 40-48 (2007).
1.38 S. Y. Li, P. Lin, C. Y. Lee, T. Y. Tseng and C. J. Huang “Effect of Sn Dopant on the Properties of ZnO Nanowires,” J. Phys. D: Appl. Phys. 37, 2274-2282 (2004).
1.39 W. Lee, M.-C. Jeong and J.-M. Myoung, “Optical Characteristics of Arsenic-doped ZnO Nanowires,” Appl. Phys. Lett. 85, 6167-6169 (2004).
1.40 G. Shen, J. H. Cho, J. K. Yoo, G.-C. Yi and C. J. Lee, “Synthesis and Optical Properties of S-doped ZnO Nanostructures: Nanonails and Nanowires,” J. Phys. Chem. B 109, 5491-5496 (2005).
1.41 Q. H. Li, Q. Wan, Y. G. Wang and T. H. Wang, “Abnormal Temperature Dependence of Conductance of Single Cd-doped ZnO Nanowires,” Appl. Phys. Lett. 86, 263101-263103 (2005).
1.42 L. Q. Liu, B. Xiang, X. Z. Zhang, Y. Zhang and D. P. Yu, “Synthesis and Room Temperature Ferromagnetism of FeCo-codoped ZnO Nanowires,” Appl. Phys. Lett. 88, 63104-63106 (2006)
1.43 L. Xu, Y. Su, Y. Chen, H. Xiao, L.-A. Zhu, Q. Zhou and S. Li, “Synthesis and Characterization of Indium-doped ZnO Nanowires with Periodical Single-twin Structures,” J. Phys. Chem. B 110, 6637-6642 (2006)
1.44 C. X. Xu, X. W. Sun, X. H Zhang, L. Ke and S. J. Chua, “Photoluminescent Properties of Copper-doped Zinc Oxide Nanowires,” Nanotechnology 15, 856-861 (2004).
1.45 J. J. Liu, M. H. Yu and W. L. Zhou, “Well-aligned Mn-doped ZnO Nanowires Synthesized by a Chemical Vapor Deposition Method,” Appl. Phys. Lett. 87, 172505-172507 (2005).
1.46 R.-C. Wang, C.-P. Liu and J.-L. Huang “Single-crystalline AlZnO Nanowires/Nanotubes Synthesized at Low Temperature,” Appl. Phys. Lett. 88, 23111-23113 (2006).
1.47 J.G. Lua, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima and S. Fujita, “ZnO-based Thin Films Synthesized by Atmospheric Pressure Mist Chemical Vapor Deposition,” J. Cryst. Growth 299, 1–10 (2007).
1.48 J. Wang, G. Du, B. Zhao, X. Yang, Y. Zhang, Y. Ma, D. Liu, Y. Chang, H. Wang, H. Yang and S. Yang, “Epitaxial Growth of NH3-doped ZnO Thin Films on <02-24> Oriented Sapphire Substrates,” J. Cryst. Growth 255, 293-297 (2003).
1.49 C. Wang, Z. Ji, K. Liu, Y. Xiang and Z. Ye, “P-type ZnO Thin Films Prepared by Oxidation of Zn3N2 Thin Films Deposited by DC Magnetron Sputtering,” J. Cryst. Growth 259, 279–281 (2003).
1.50 K. K. Kim, H.S. Kim, D. K. Hwang, J. H. Lim and S. J. Park, “Realization of P-type ZnO Thin Films via Phosphorus Doping and Thermal Activation of the Dopant,” Appl. Phys. Lett. 83, 63-65 (2003).
1.51 Y.R. Ryu, S. Zhu, D.C. Look, J.M. Wrobel, H.M. Jeong and H.W. White, “Synthesis of P-type ZnO Films,” J. Cryst. Growth 216, 330-334 (2000).
1.52 S. Anandan, A. Vinua, K.L.P. Sheeja Lovely, N. Gokulakrishnan, P. Srinivasu, T. Mori, V. Murugesan, V. Sivamurugan and K. Ariga, “Photocatalytic Activity of La-doped ZnO for the Degradation of Monocrotophos in Aqueous Suspension,” Journal of Molecular Catalysis A: Chemical. 266, 149-157 (2007).
1.53 G. Heiland, “Homogeneous Semiconducting Gas Sensors,” Sens. Actuators 2, 343-361 (1982).
1.54 H. Chon and C. D. Prater, “Hall Effect Studies of Carbon Monoxide Oxidation over Doped Zinc Oxide Catalysts,” Discuss. Faraday Soc. 41, 380-393 (1966).
1.55 H Chon and J. Pajares “Hall Effect Studies of Oxygen Chemisorption on Zinc Oxide,” J.Catal. 14, 257-260 (1969).
1.56 M. Nitschke, B. J. Smith, L. S. Pilotto, D. L. Pisaninell, M. J. Abramson and R. E. Ruffin “Respiratory Health Effects of Nitrogen Dioxide Exposure and Current Guidelines,” International Journal of Environmental Health Research 9, 39-53 (1999)
Chapter 2
2.1 P.-S. Cho, K.-W.Kim and J.-H. Lee, “NO2 Sensing Characteristics of ZnO Nanorods Prepared by Hydrothermal Method,” J. Electroceram 17, 975–978 (2006).
Chapter 3
3.1 Y. F. Gao, M. Nagai, Y. Masuda, F. Sato, W. S. Seo and K. Koumoto, “Surface Precipitation of Highly Porous Hydrotalcite-like Film on Al from a Zinc Aqueous Solution,” Langmuir 22, 3521-3527 (2006).
Chapter 4
4.1 T. Minami, T. Miyata and T. Yamamoto, “Work Function of Transparent Conducting Multicomponent Oxide Thin Films Prepared by Magnetron Sputtering,” Surf. Coat. Technol. 108–109, 583-587 (1998).
4.2 L. Liao, W.F Zhang, H. B. Lu, J. C. Li, D.F. Wang, C. Liu and D. J. Fu, “Investigation of the Temperature Dependence of the Field Emission of ZnO Nanorods,” Nanotechnology 18, 225703-225707 (2007).