簡易檢索 / 詳目顯示

研究生: 許育祥
Hsu, Yu-Hsiang
論文名稱: 晶圓檢測優化問題之實務求解演算法
Practical Solution Algorithms for the Wafer Inspection Problem
指導教授: 林東盈
Lin, Dung-Ying
口試委員: 陳正杰
Chen, Cheng-Chieh
王逸琳
Wang, I-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 44
中文關鍵詞: 晶圓針測晶圓檢測問題旅人商問題集合覆蓋問題分枝界線法
外文關鍵詞: Probe test, wafer inspection, traveling salesman problem, set-covering problem, branch-and-bound
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 晶圓針測為晶圓製造的流程之一,當晶圓片製造完成後,會透過探針卡(probe cards)確認晶圓有無瑕疵,然而隨著製程之複雜度、元件整合度越高,測試困難度亦將大幅提高,進而影響檢測效率、廠商利潤。本研究探討晶圓檢測優化問題,並分析兩個有交互作用的子問題 (subproblem),即集合覆蓋問題 (set-covering problem (SCP))和旅行商問題 (traveling salesman problem (TSP))。集合覆蓋問題為探針卡踩在晶粒(die)上以檢測晶圓有無瑕疵。旅行商問題則根據SCP求出的探針卡移動策略進而求得檢測迴路(tour)。為了解決此晶圓檢測問題,本研究提出兩種解決方案策略:兩階段(two-phase)及分枝界線法(branch-and-bound-based (B&B))。從數值結果可知,B&B 方法可以找到最佳解,而兩階段求解方法可以有效率地找出可行解,相較兩階段法,在檢測迴路方面最高有26.65%之改善。此外還發現檢測性能因所使用探針卡的尺寸和設計而異。大型及對稱的探針卡可以更高效地檢測晶圓,因此普遍來說是更佳的選擇。最後,透過B&B可以確定SCP和TSP的目標值權衡,說明兩個目標值不一定是正相關。


    The wafer inspection problem aims to efficiently examine wafers with probe cards during the semiconductor manufacturing process so that defective wafers can be identified. In this study, we investigate the wafer inspection problem and analyze it as two interactive subproblems, namely the set-covering problem (SCP) and traveling salesman problem (TSP). The SCP determines the dies a probe card should step on so that the dies in a wafer can be adequately examined. The TSP identifies the inspection tour of the probe card based on the stepping strategy given in the SCP. To solve this wafer inspection problem, two solution strategies are explored: two-phase and branch-and-bound-based (B&B) approach. Numerical results show that the proposed B&B approach can identify the optimal solution, while the two-phase solution approach can efficiently identify feasible solutions. Specifically, the improvement rate of the tour cost in B&B can be as high as 26.65% compared to two-phase method. Furthermore, it is found that the inspection performance varies due to the size and design of the probe card used. Larger and symmetric probe cards can result in more efficient and effective inspection results and are thus preferable choices. Finally, with the B&B, we can determine the tradeoff of the objective values of the SCP and TSP, indicating that these two values are not necessarily positively correlated.

    ABSTRACT ii LIST OF FIGURES vi LIST OF TABLES vii 1. INTRODUCTION 1 1.1 Research background and motivation 1 1.2 Research purpose and method 3 1.3 Research framework 4 2. LITERATURE REVIEW 6 2.1 Wafer production studies 6 2.2 The set-covering problem (SCP) 7 2.3 The covering salesman problem (CSP) 8 2.4 Summary 11 3. MATHEMATICAL FORMULATION 13 3.1 Problem statement 13 3.2 A mathematical formulation for the wafer inspection problem 17 4. SOLUTION APPROACHES 21 4.1 Two-phase solution approach 21 4.2 Branch-and-bound-based (B&B) algorithm 22 4.2.1 Enumeration tree 23 4.2.2 solution strategies 24 4.2.3 The algorithmic steps 26 4.3 Summary 27 5. EMPIRICAL STUDIES 29 5.1 Analysis of two objectives 29 5.2 Comparison of solution strategies 31 5.3 Sensitivity analysis 35 6. CONCLUDING REMARKS AND FUTURE RESEARCH 40 6.1 Conclusion and contribution 40 6.2 Future Work 40 REFERENCE 42

    [1]. Ao, S.-I., Castillo, O., Huang, X., & Yang, G.-C. (2016). A Route Optimization Problem in Electrical PCB Inspections: Pickup and Delivery TSP-Based Formulation. Transactions on Engineering Technologies : International MultiConference of Engineers and Computer Scientists 2015, 1 online resource (VIII, 208 pages 106 illustrations in color. doi:10.1007/978-981-10-0551-0
    [2]. Arkin, E. M., & Hassin, R. (1994). Approximation Algorithms for the Geometric Covering Salesman Problem. Discrete Applied Mathematics, 55(3), 197-218. doi:Doi 10.1016/0166-218x(94)90008-6
    [3]. Avis, D. (1980). A Note on Some Computationally Difficult Set Covering Problems. Mathematical Programming, 18(2), 138-145. doi:Doi 10.1007/Bf01588309
    [4]. Beasley, J. E. (1987). An Algorithm for Set Covering Problem. European Journal of Operational Research, 31(1), 85-93. doi:Doi 10.1016/0377-2217(87)90141-X
    [5]. Chen, H., Harrison, J. M., Mandelbaum, A., Vanackere, A., & Wein, L. M. (1988). Empirical-Evaluation of a Queuing Network Model for Semiconductor Wafer Fabrication. Operations Research, 36(2), 202-215. doi:DOI 10.1287/opre.36.2.202
    [6]. Chisman, J. A. (1975). The clustered traveling salesman problem. Computers & Operations Research, 2(2), 115-119.
    [7]. Chvatal, V. (1979). A greedy heuristic for the set-covering problem. Mathematics of operations research, 4(3), 233-235.
    [8]. Current, J. R., & Schilling, D. A. (1989). The Covering Salesman Problem. Transportation Science, 23(3), 208-213. doi:DOI 10.1287/trsc.23.3.208
    [9]. Dantzig, G., Fulkerson, R., & Johnson, S. (1954). Solution of a Large-Scale Traveling-Salesman Problem. Journal of the Operations Research Society of America, 2(4), 393-410. doi:DOI 10.1287/opre.2.4.393
    [10]. Farahani, R. Z., Asgari, N., Heidari, N., Hosseininia, M., & Goh, M. (2012). Covering problems in facility location: A review. Computers & Industrial Engineering, 62(1), 368-407. doi:10.1016/j.cie.2011.08.020
    [11]. Freisleben, B., & Merz, P. (1996). A genetic local search algorithm for solving symmetric and asymmetric traveling salesman problems. 1996 Ieee International Conference on Evolutionary Computation (Icec '96), Proceedings Of, 616-621. doi:Doi 10.1109/Icec.1996.542671
    [12]. Glover, F. (1990). Artificial-Intelligence, Heuristic Frameworks and Tabu Search. Managerial and Decision Economics, 11(5), 365-375. doi:DOI 10.1002/mde.4090110512
    [13]. Golden, B., Naji-Azimi, Z., Raghavan, S., Salari, M., & Toth, P. (2012). The Generalized Covering Salesman Problem. Informs Journal on Computing, 24(4), 534-553. doi:10.1287/ijoc.1110.0480
    [14]. Hakimi, S. L. (1965). Optimum Distribution of Switching Centers in a Communication Network and Some Related Graph Theoretic Problems. Operations Research, 13(3), 462-&. doi:DOI 10.1287/opre.13.3.462
    [15]. Hsiao, T. C., Huang, S. C., & Chang, H. Y. (2017). Design Optimization of Vertical Needle Geometry for Bumpwafer-Level Probing. Transactions of the Canadian Society for Mechanical Engineering, 41(2), 313-326. doi:DOI 10.1139/tcsme-2017-1022
    [16]. Johri, P. K. (1993). Practical Issues in Scheduling and Dispatching in Semiconductor Wafer Fabrication. Journal of Manufacturing Systems, 12(6), 474-485. doi:Doi 10.1016/0278-6125(93)90344-S
    [17]. Knox, J. (1994). Tabu Search Performance on the Symmetrical Traveling Salesman Problem. Computers & Operations Research, 21(8), 867-876. doi:Doi 10.1016/0305-0548(94)90016-7
    [18]. Pandiri, V., Singh, A., & Rossi, A. (2020). Two hybrid metaheuristic approaches for the covering salesman problem. Neural Computing & Applications. doi:10.1007/s00521-020-04898-4
    [19]. Papadimitriou, C. H. (1977). The Euclidean traveling salesman problem is NP-complete. Theoretical Computer Science, 4(3), 237-244.
    [20]. Pferschy, U., & Stanek, R. (2017). Generating subtour elimination constraints for the TSP from pure integer solutions. Central European Journal of Operations Research, 25(1), 231-260. doi:10.1007/s10100-016-0437-8
    [21]. Raman, V., & Gill, N. S. (2017). Review of different heuristic algorithms for solving Travelling Salesman Problem. International Journal of Advanced Research in Computer Science, 8(5).
    [22]. Salari, M., & Naji-Azimi, Z. (2012). An integer programming-based local search for the covering salesman problem. Computers & Operations Research, 39(11), 2594-2602. doi:10.1016/j.cor.2012.01.004
    [23]. Salari, M., Reihaneh, M., & Sabbagh, M. S. (2015). Combining ant colony optimization algorithm and dynamic programming technique for solving the covering salesman problem. Computers & Industrial Engineering, 83, 244-251. doi:10.1016/j.cie.2015.02.019
    [24]. Toregas, C., Swain, R., ReVelle, C., & Bergman, L. (1971). The location of emergency service facilities. Operations Research, 19(6), 1363-1373.
    [25]. Yang, T. H., Lin, I. C., & Huang, C. F. (2020). A Decision Support System for Wafer Probe Card Production Scheduling. International Journal of Industrial Engineering-Theory Applications and Practice, 27(1), 140-152. Retrieved from <Go to ISI>://WOS:000522042500010
    [26]. Zang, X. N., Jiang, L., Ratli, M., & Ding, B. (2020). A parallel variable neighborhood search for solving covering salesman problem. Optimization Letters. doi:10.1007/s11590-020-01642-8

    QR CODE