簡易檢索 / 詳目顯示

研究生: 黃品翰
Huang, Pin-Han
論文名稱: 藉由雙光子誘發光電流回饋控制之映射色散似噪音及鎖模摻鐿光纖雷射
Auto-setting of noise-like and mode-locked dispersion-mapped Yb-doped fiber laser using two-photon-induced photocurrent as the feedback signal
指導教授: 潘犀靈
Pan, Ci-Ling
吳小華
Wu, Hsiao-Hua
口試委員: 施宙聰
Shy, Jow-Tsong
林家弘
Lin, Ja-Hon
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 73
中文關鍵詞: 光纖雷射似噪音脈衝鎖模脈衝雙光子吸收回饋控制
外文關鍵詞: fiber laser, noise-like pulse, mode-locked pulse, two-photon absorption, feedback control
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 似噪音脈衝自第一次被發現於摻鉺光纖雷射直至今日,已引起眾多研究者的興趣,並且在光學同調斷層掃描系統(optical coherence tomography)以及雷射誘導擊穿光譜(laser-induced breakdown spectroscopy)皆擁有良好的表現。因此,若我們能建構一套開機即自動輸出似噪音脈衝之光纖雷射,不論是在學術研究或是產業應用上都能帶來更多的便利性。在本篇論文中,我們報導以適當之回饋控制使一台映射色散摻鐿光纖雷射自動產生似噪音脈衝或鎖模脈衝。似噪音脈衝通常擁有寬且平滑的光譜,我們將光譜寬度作為回饋控制之反饋信號,可以選擇性地產生似噪音脈衝或是鎖模脈衝。我們在理論模擬及實驗中皆證實利用似噪音脈衝作為光二極體之激發光源可產生較高的雙光子吸收(two-photon absorption,簡稱TPA)誘發光電流信號。這也可以作為回饋控制之反饋信號,成功讓雷射在開機後數分鐘內自動達到穩定的似噪音脈衝輸出。


    Since the first demonstration of noise-like-pulse (NLP) operation in the ring cavity of an Er-doped fiber oscillator, there has been tremendous interests in this special regime of mode-locked fiber lasers. NLPs have been proven to be successfully applied to both optical coherence tomography (OCT) and laser-induced breakdown spectroscopy (LIBS). Therefore, it is desirable to build up a mode-locked fiber laser system which can automatically generate NLPs. In this thesis, I construct a dispersion-mapped ytterbium-doped fiber laser system which can automatically produce NLPs output by a proper feedback control method. Firstly, we choose the 3-dB optical bandwidth as the feedback signal since NLPs have broad and smooth optical spectrum compared to conventional mode-locked pulses (MLPs). Then, the fiber laser system can selectively generate NLP and MLP output. Secondly, it is shown that two-photon absorption (TPA) from a GaAsP photodiode can best discriminate the NLP from the MLP. By using two-photon-induced photocurrent as the feedback signal, automatic mode-locking of a dispersion-mapped Yb-doped fiber laser system is successfully demonstrated. This system can autoset to a stable NLP or MLP state within a few minutes.

    摘要 I Abstract II 致謝 III Table of Contents IV Lists of Tables VII Lists of Figures VIII Chapter 1 Introduction 1 Chapter 2 Theoretical background 3 2.1 Ytterbium-doped fiber laser and amplifier 3 2.1.1. Ytterbium-doped fiber 4 2.1.2. Pumping wavelength of laser diode 6 2.1.3. Doped fiber amplifier 6 2.1.4. Operation of cladding pumping 7 2.1.5. Amplified Spontaneous Emission (ASE) 8 2.2 Mode-locking techniques 9 2.2.1. Mode-locking theory 10 2.2.2. Active mode-locking 11 2.2.3. Passive mode-locking 13 2.2.4. Nonlinear polarization evolution (NPE) 13 2.3 Nonlinearities in optical fibers 15 2.3.1. Self-Phase modulation (SPM) 15 2.3.2. Stimulated Raman Scattering (SRS) 16 2.4 Pulse propagation in optical fiber 18 2.4.1. Basic concept 18 2.4.2. Nonlinear Schrödinger coupled-mode equation 21 2.5 Noise-like pulse (NLP) 22 2.5.1. Physical mechanism 22 2.5.2. Characteristics 24 2.6 Automatic control of mode-locked fiber lasers 26 2.6.1. Background 26 2.6.2. Different choices of feedback signals 27 Chapter 3 Generation of mode-locked and noise-like pulses 29 3.1 Dispersion-mapped fiber laser 29 3.1.1. System setup 29 3.1.2. Characteristics 32 3.1.3. Tunable central wavelength and optical bandwidth 36 3.1.4. Power scaling of fiber laser 37 Chapter 4 Two-photon absorption of MLP and NLP 40 4.1 Introduction 40 4.2 Simulation 40 4.2.1. Pulse waveform generation 40 4.2.2. Photogenerated carrier density 44 4.3 Experiment 46 4.3.1. System setup 46 4.3.2. Results 47 4.4 TPA by amplified pulses 49 4.4.1. System setup 49 4.4.2. Characteristics 50 4.4.3. Results 51 4.5 Summary 52 Chapter 5 Automatic mode-locked fiber laser system 53 5.1 Introduction 53 5.2 Using optical spectrum bandwidth 53 5.2.1. System setup 54 5.2.2. Result 56 5.2.3. Difficulties 58 5.3 Using two-photon-induced photocurrent 59 5.3.1. System setup 59 5.4 Results 61 5.4.1. Fluctuation of the two-photon signal 61 5.4.2. Magnitude of the two-photon signal 63 5.5 Program optimization and consecutive measurements 64 5.6 Summary 65 Chapter 6 Conclusions and future works 66 6.1 Conclusions 66 6.2 Future works 67 References 68

    [1] A. Zaytsev, C.-H. Lin, Y.-J. You, C.-C. Chung, C.-L. Wang, and C.-L. Pan, "Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers," Optics express, vol. 21, pp. 16056-16062, 2013.
    [2] Y.-J. You, C. Wang, Y.-L. Lin, A. Zaytsev, P. Xue, and C.-L. Pan, "Ultrahigh-resolution optical coherence tomography at 1.3 μm central wavelength by using a supercontinuum source pumped by noise-like pulses," Laser Physics Letters, vol. 13, p. 025101, 2015.
    [3] B. Nie, G. Parker, V. V. Lozovoy, and M. Dantus, "Energy scaling of Yb fiber oscillator producing clusters of femtosecond pulses," Optical Engineering, vol. 53, pp. 051505-051505, 2014.
    [4] R. Woodward and E. Kelleher, "Towards ‘smart lasers’: self-optimisation of an ultrafast pulse source using a genetic algorithm," Scientific Reports, vol. 6, 2016.
    [5] U. Andral, R. S. Fodil, F. Amrani, F. Billard, E. Hertz, and P. Grelu, "Fiber laser mode locked through an evolutionary algorithm," Optica, vol. 2, pp. 275-278, 2015.
    [6] R. Iegorov, T. Teamir, G. Makey, and F. Ilday, "Direct control of mode-locking states of a fiber laser," Optica, vol. 3, pp. 1312-1315, 2016.
    [7] M. Olivier, M.-D. Gagnon, and M. Piché, "Automated mode locking in nonlinear polarization rotation fiber lasers by detection of a discontinuous jump in the polarization state," Optics express, vol. 23, pp. 6738-6746, 2015.
    [8] D. Radnatarov, S. Khripunov, S. Kobtsev, A. Ivanenko, and S. Kukarin, "Automatic electronic-controlled mode locking self-start in fibre lasers with non-linear polarisation evolution," Optics express, vol. 21, pp. 20626-20631, 2013.
    [9] X. Shen, W. Li, M. Yan, and H. Zeng, "Electronic control of nonlinear-polarization-rotation mode locking in Yb-doped fiber lasers," Optics letters, vol. 37, pp. 3426-3428, 2012.
    [10] X. Fu, S. L. Brunton, and J. N. Kutz, "Classification of birefringence in mode-locked fiber lasers using machine learning and sparse representation," Optics express, vol. 22, pp. 8585-8597, 2014.
    [11] D. G. Winters, S. Backus, and M. S. Kirchner, "Electronic Control of Nonlinear Polarization Evolution Modelocking in a Fiber Laser," in Nonlinear Optics, 2017, p. NTh3A. 5.
    [12] X. Fu, "Integrating Data-Driven Methods in Nonlinear Dynamical Systems: Control, Sparsity and Machine Learning," 2015.
    [13] J. N. Kutz, S. Brunton, and X. Fu, "Machine Learning for Self-Tuning Optical Systems," in Proceedings of the World Congress on Engineering, 2015.
    [14] S. L. Brunton, X. Fu, and J. N. Kutz, "Self-tuning fiber lasers," IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, pp. 464-471, 2014.
    [15] S. Kim, M. Choia, J. Songa, J. Leea, and Y. Kima, "Selective generation of two pulse modes in a single all normal dispersion fiber laser oscillator and analysis of their optical characteristics," in Proc. of SPIE Vol, 2017, pp. 100832B-1.
    [16] T. Hellwig, T. Walbaum, P. Groß, and C. Fallnich, "Automated characterization and alignment of passively mode-locked fiber lasers based on nonlinear polarization rotation," Applied Physics B: Lasers and Optics, vol. 101, pp. 565-570, 2010.
    [17] RP-Photonics. Rare-earth-doped Gain Media. Available: https://www.rp-photonics.com/rare_earth_doped_gain_media.html
    [18] A. Govind P, Application of Nonlinear Fiber Opitcs, 2nd ed.: Academic Press, 2008.
    [19] K. Lu and N. K. Dutta, "Spectroscopic properties of Yb-doped silica glass," Journal of Applied Physics, vol. 91, p. 576, 2002.
    [20] R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE Journal of Quantum Electronics, vol. 33, pp. 1049-1056, Jul 1997.
    [21] C. Wandera, "Fiber Lasers in Material Processing," in Fiber Laser, ed: InTech, 2016.
    [22] H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, et al., "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region," IEEE Journal of Selected Topics in Quantum Electronics, vol. 1, pp. 2-13, 1995.
    [23] RP-Photonics. Double-clad Fibers. Available: https://www.rp-photonics.com/double_clad_fibers.html
    [24] M. Javadimanesh, S. G. Sabouri, and A. Khorsandi, "The effect of cladding geometry on the absorption efficiency of double-clad fiber lasers," Optica Applicata, vol. 46, 2016.
    [25] N. P. Barnes and B. M. Walsh, "Amplified spontaneous emission-application to Nd:YAG lasers," Quantum Electronics, IEEE Journal of, vol. 35, pp. 101-109, 1999.
    [26] W. E. Lamb, Jr., "Theory of an Optical Maser," Physical Review, vol. 134, pp. A1429-A1450, 06/15/ 1964.
    [27] H. A. Haus, "Mode-locking of lasers," Selected Topics in Quantum Electronics, IEEE Journal of, vol. 6, pp. 1173-1185, 2000.
    [28] L. E. Hargrove, R. L. Fork, and M. A. Pollack, "Locking of He-Ne laser modes induced by synchronous intracavity modulation," Applied Physics Letters, vol. 5, p. 4, 1964.
    [29] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, et al., "Atomic‐layer graphene as a saturable absorber for ultrafast pulsed lasers," Advanced Functional Materials, vol. 19, pp. 3077-3083, 2009.
    [30] V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation," Electronics Letters, vol. 28, pp. 1391-1393, 1992.
    [31] F. Ö. Ilday, J. Buckley, L. Kuznetsova, and F. W. Wise, "Generation of 36-femtosecond pulses from a ytterbium fiber laser," Optics Express, vol. 11, pp. 3550-3554, 2003.
    [32] T. Hirooka and M. Nakazawa, "Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion," Optics letters, vol. 29, pp. 498-500, 2004.
    [33] B. Ortaç, A. Hideur, M. Brunel, C. Chédot, J. Limpert, A. Tünnermann, et al., "Generation of parabolic bound pulses from a Yb-fiber laser," Optics express, vol. 14, pp. 6075-6083, 2006.
    [34] S. Kobtsev, S. Kukarin, and Y. Fedotov, "Ultra-low repetition rate mode-locked fiber laser with high-energy pulses," Optics Express, vol. 16, pp. 21936-21941, 2008.
    [35] L. Zhao, D. Tang, T. Cheng, and C. Lu, "Nanosecond square pulse generation in fiber lasers with normal dispersion," Optics communications, vol. 272, pp. 431-434, 2007.
    [36] F. Shimizu, "Frequency Broadening in Liquids by a Short Light Pulse," Physical Review Letters, vol. 19, pp. 1097-1100, 11/06/ 1967.
    [37] S. A. Planas, N. L. Mansur, C. H. Cruz, and H. L. Fragnito, "Spectral narrowing in the propagation of chirped pulses in single-mode fibers," Opt Lett, vol. 18, pp. 699-701, May 1 1993.
    [38] C. V. Raman and K. S. Krishnan, "A new type of secondary radiation," Nature, vol. 121, pp. 501-502, Jan-Jun 1928.
    [39] R. H. Stolen, A. R. Tynes, and E. P. Ippen, "Raman Oscillation in Glass Optical Waveguide," Applied Physics Letters, vol. 20, pp. 62-64, 1972.
    [40] F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Physical Review Letters, vol. 92, p. 213902, 05/27/ 2004.
    [41] G. P. Agrawal, Nonlinear fiber optics, 4 ed.: Academic Press, 2007.
    [42] R. Song, J. Hou, S. Chen, W. Yang, and Q. Lu, "High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier," Optics Letters, vol. 37, pp. 1529-1531, 2012/05/01 2012.
    [43] L. A. Vazquez-Zuniga and Y. Jeong, "Super-Broadband Noise-Like Pulse Erbium-Doped Fiber Ring Laser With a Highly Nonlinear Fiber for Raman Gain Enhancement," Ieee Photonics Technology Letters, vol. 24, pp. 1549-1551, Sep 1 2012.
    [44] S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, and A. Latkin, "Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers," Optics Express, vol. 17, pp. 20707-20713, 2009.
    [45] O. Pottiez, R. Grajales-Coutino, B. Ibarra-Escamilla, E. A. Kuzin, and J. C. Hernandez-Garcia, "Adjustable noiselike pulses from a figure-eight fiber laser," Applied Optics, vol. 50, pp. E24-E31, Sep 1 2011.
    [46] S. Kobtsev and S. Smirnov, "Fiber lasers mode-locked due to nonlinear polarization evolution: golden mean of cavity length," Laser Physics, vol. 21, pp. 272-276, 2011.
    [47] L. Zhao, D. Tang, J. Wu, X. Fu, and S. Wen, "Noise-like pulse in a gain-guided soliton fiber laser," Optics express, vol. 15, pp. 2145-2150, 2007.
    [48] M. Horowitz, Y. Barad, and Y. Silberberg, "Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser," Optics Letters, vol. 22, pp. 799-801, Jun 1 1997.
    [49] S. Smirnov, S. Kobtsev, S. Kukarin, and A. Ivanenko, "Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation," Optics express, vol. 20, pp. 27447-27453, 2012.
    [50] D. Tang, L. Zhao, and B. Zhao, "Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser," Optics Express, vol. 13, pp. 2289-2294, 2005/04/04 2005.
    [51] C. Aguergaray, A. Runge, M. Erkintalo, and N. G. Broderick, "Raman-driven destabilization of mode-locked long cavity fiber lasers: fundamental limitations to energy scalability," Optics letters, vol. 38, pp. 2644-2646, 2013.
    [52] A. Boucon, B. Barviau, J. Fatome, C. Finot, T. Sylvestre, M. W. Lee, et al., "Noise-like pulses generated at high harmonics in a partially-mode-locked km-long Raman fiber laser," Applied Physics B, vol. 106, pp. 283-287, 2012.
    [53] Y.-J. You, "Fiber-laser-generated noise-like pulses and their applications to supercontinuum generation and optical coherence tomography," Ph.D, 2016.
    [54] C.-J. Weng. (2007). Introduction to high power fiber laser. Available: http://www.itrc.narl.org.tw/Publication/Newsletter/no81/p10.php
    [55] M. Nikodem, K. Krzempek, K. Zygadlo, G. Dudzik, A. Waz, K. Abramski, et al., "Intracavity polarization control in mode-locked Er-doped fibre lasers using liquid crystals," Opto-Electronics Review, vol. 22, pp. 113-117, 2014.
    [56] V. G. Bucklew, W. H. Renninger, P. S. Edwards, and Z. Liu, "Iteratively seeded mode-locking," arXiv preprint arXiv:1612.04296, 2016.
    [57] H. Lim, F. Ö. Ilday, and F. W. Wise, "Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser," Optics Letters, vol. 28, pp. 660-662, 2003/04/15 2003.
    [58] Nufern. (2015). Specification of 10/125 NuGEN9 Precision Matched Active LMA Double Clad Fiber. Available: http://www.nufern.com/pam/optical_fibers/2807/LMA-YDF-10/125-9M/
    [59] Skyeralaser. Datasheet of 10W 915nm Uncooled Multimode Laser Diode Module. Available: http://www.skyeralaser.com/products_show.asp?s_id=21
    [60] Lasfiberio. (2016). Specification of Multimode Pump+Signal Combiner, MPSC (2+1)×1. Available: http://www.lasfiberio.com/cn/product_info.php?id=13
    [61] Newport. Specification of Broadband Polarizing Cube Beamsplitter, 900-1300 nm. Available: https://www.newport.com/p/05FC16PB.7
    [62] CVI-Laser-Optics. Specification of Zero Order Waveplates QWPO-1064-05-4. Available: https://www.cvilaseroptics.com/qwpo-compound-zero-order-waveplates/product/qwpo_compound_zero_order_waveplates
    [63] CASTECH. (2016). Specification fo True Zero-Order Waveplates. Available: http://www.castech.com/products_detail/productId=64.html
    [64] Thorlabs. Specification of Ruled Reflective Diffraction Grating, 600/mm. Available: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=8627&pn=GR25-0610
    [65] A. K. Zaytsev, C. H. Lin, Y. J. You, F. H. Tsai, C. L. Wang, and C. L. Pan, "A controllable noise-like operation regime in a Yb-doped dispersion-mapped fiber ring laser," Laser Physics Letters, vol. 10, p. 045104, 2013.
    [66] Electro-Optics-Technology. (2015). Datasheet of InGaAs Photodetector. Available: https://www.eotech.com/cart/19/photodetectors/ingaas-photodetectors/et-3000---ingaas-photodetector
    [67] Teledyne-Lecroy. (2015). Datasheet of Oscilloscope WaveRunner 610zi. Available: http://teledynelecroy.com/oscilloscope/oscilloscopemodel.aspx?modelid=4781
    [68] Anritsu. (2016). Datasheet of Optical Spectrum Analyzer (OSA) MS9740A. Available: https://www.anritsu.com/zh-TW/test-measurement/products/ms9740a
    [69] S. Smirnov and S. Kobtsev, "Modelling of noise-like pulses generated in fibre lasers," in Proc. SPIE, 2016, p. 97320S.
    [70] S. L. Shapiro, "Ultrashort light pulses," Ultrashort Light Pulses: Picosecond Techniques and Applications, 1984.
    [71] Hamamatsu-Photonics. (2012). Datasheet of GaAsP photodiode G1117. Available: http://www.hamamatsu.com/jp/en/G1117.html#1328449174156
    [72] A. Chong, J. Buckley, W. Renninger, and F. Wise, "All-normal-dispersion femtosecond fiber laser," Optics Express, vol. 14, pp. 10095-10100, 2006.
    [73] S.-K. Wang, Q.-Y. Ning, A.-P. Luo, Z.-B. Lin, Z.-C. Luo, and W.-C. Xu, "Dissipative soliton resonance in a passively mode-locked figure-eight fiber laser," Optics express, vol. 21, pp. 2402-2407, 2013.

    QR CODE