簡易檢索 / 詳目顯示

研究生: 林家旭
論文名稱: Fe2AlCoCrNiMo0.5Bx高熵合金在室溫下之電化學性質
Electrochemical Properties of Fe2AlCoCrNiMo0.5Bx High Entropy Alloys under room Temperature
指導教授: 施漢章
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 89
中文關鍵詞: 高熵合金電化學極化曲線阻抗頻譜
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Fe2AlCoCrNiMo0.5Bx (Fe2)多元高熵合金在含有硫酸根的環境下,無論陽離子是氫離子或是鈉離子皆可以形成有效的鈍態膜,而其腐蝕速率會隨著氧氣分壓的增加而增加。而在氯化鈉溶液中,由於鈉離子的移動速率較慢故會有極限電流密度的存在,而其腐蝕行為則是受到擴散控制,而當溶液中氧氣分壓增加時,其腐蝕速率會先增後減,可能原因即為腐蝕產物增加後反而阻擋了擴散進行。
    而在硫酸溶液中添加氯化鈉時,會使 Fe2高熵合金之鈍態能力衰退,並隨著添加氯化鈉的濃度增加衰退程度跟著增加。
    過往研究指出,若是在 Fe2高熵合金添加不同莫耳比的硼原子時,可以提升其耐磨耗能力,而其在除氧硫酸中之抗腐蝕性質會隨著添加硼原子增多而衰減。在除氧氯化鈉溶液中,則是在添加微量時對抗腐蝕性質有些許助益,但是一旦添加超過莫耳比超過 0.5時,則其腐蝕性質會快速的衰減。


    目錄 致謝……………………………………………………………………Ⅰ 摘要……………………………………………………………………Ⅱ 目錄……………………………………………………………………Ⅲ 壹、前言………………………………………………………………1 貳、文獻回顧…………………………………………………………2 2.1 非晶質合金………………………………………………………2 2.1.1 非晶質合金的發展……………………………………………2 2.1.2 非晶質合金的製程……………………………………………3 2.2 高熵合金的特點…………………………………………………4 2.3 電化學測試方法…………………………………………………6 2.3.1 線性極化法……………………………………………………6 2.3.2 陽極極化法……………………………………………………7 2.3.3 循環極化法……………………………………………………8 2.3.4 阻抗頻譜法……………………………………………………11 參、實驗步驟…………………………………………………………15 3.1 合金成份…………………………………………………………15 3.2 試片製備…………………………………………………………15 3.2.1真空電弧熔煉………………………………………………… 15 3.2.2 試片前置處理…………………………………………………15 3.3 電化學測試………………………………………………………15 3.3.1 極化測試………………………………………………………16 3.3.2 循環極化法……………………………………………………16 3.3.3 阻抗頻譜分析…………………………………………………17 3.4 微結構觀察………………………………………………………17 肆、結果與討論………………………………………………………20 4.1 極化測試…………………………………………………………20 4.1.1 在0.5M硫酸中之極化測試……………………………………20 4.1.2 在不同濃度之除氧硫酸溶液中之極化測試…………………29 4.1.3 在1M氯化鈉中之極化測試……………………………………31 4.1.4 在不同濃度之除氧氯化鈉溶液中之極化測試………………38 4.1.5 在 0.5 M硫酸中添加不同濃度之氯化鈉之影響……………40 4.1.6 在高熵合金中添加不同莫耳比的硼原子的影響……………47 4.2 腐蝕產物微結構觀察結果與阻抗頻譜分析……………………52 伍、結論………………………………………………………………84 陸、參考文獻…………………………………………………………86

    1.黃國雄, “等莫耳比多元合金系統之研究”, 國立清華大學材料科學工程研究所碩士論文, 1996.
    2.賴高廷, “高亂度合金微結構及性質探討” , 國立清華大學材料科學工程研究所碩士論文, 1998.
    3.許雲翔, “以FCC及BCC元素為劃分配製等莫耳多元合金系統之研究” , 國立清華大學材料科學工程研究所碩士論文 , 2000.
    4.洪育德,“Cu-Ni-Al-Co-Cr-Fe-Si-Ti 高亂度合金之探討” , 國立清華大學材料科學工程研究所碩士論文, 2001.
    5.陳家裕,“塗層用多元高熵合金之開發” , 國立清華大學材料科學工程研究所碩士論文, 2002.
    6.童重縉, “Cu-Co-Ni-Cr-Al-Fe 高熵合金變形結構與高溫特性之研究” , 國立清華大學材料科學工程研究所碩士論文, 2002.
    7.Herbert H. Uhlig and R. Winston Revie, “Corrosion and Corrosion Control”, 3rd ed., John Wiley and sons, 1991.
    8.Denny A. Jones, “Principle and Prevention of Corrsion”, 2nd ed., Simon & Schuster, 1996.
    9.陳彥羽, 洪育德, 葉均蔚, 施漢章, “高亂度合金的金相與電化學極化之研究 – 在室溫下與其他鋼材做比較”, 防蝕工程 第十八卷第一期 25 – 40, 2004.
    10.Y. Y. Chen, T. Duval, U. D. Hung, J.W. Yeh, H. C. Shih, “Electrochemical kinetics of the high entropy alloys in aqueous environments—a comparison with type 304 stainless steel”, Corros. Sci. xxx (2004) xxx-xxx.
    11.Y. Y. Chen, T. Duval, U. D. Hung, J.W. Yeh, H. C. Shih, “Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel”, Corros. Sci. xxx (2004) xxx-xxx.
    12.F.I. Wei, J.T. Hsu, J.Y. Wu, H.C. Shih, J.C. Oung, “Applications of electrochemical hysteresis for constructing the experimental potential-pH diagram for steels in seawater”, Mat. Chem. and Phys., 37 (1994) 230-236.
    13.S. Krakowiak, K. Darowicki, P. Slepski, “Impedance investigation of passive 304 stainless steel in the pit pre-initiation state”, Electrochim. Acta, 50 (2005) 2699- 2704
    14.A. Nishikata, Y. Ichihara, T. Tsuru, “An application of electrochemical impedance spectroscopy to atmospheric corrosion study”, Corros. Sci. 37 (1995) 897-911.
    15.T. Hong, M. Nagumo, “The effectof chloride concentration on early stages of pitting for type 304 stainless steel revealed by the AC impedance method”, Corros. Sci. 39 (1997)285-293.
    16.張顧齡, “被覆氮化鉻鋼材的電化學行為研究”, 清華大學材料科學工程研究所博士論文, 2004.
    17.張瑋倫, 杜宗附, 開物, “鐵鈷鎳基等莫耳合金之高溫硫化行為研究”, 防蝕工程 第十九卷 第一期 91-109, 2005.
    18.Robert G. Kelly, John R. Scully, David W. Shoesmith, Rudolph G. Buchheit, “ELECTROCHEMICAL TECHNIQUES IN CORROSION SCIENCE AND ENGINEERING”, Marcel Dekker, Inc. New York, 2003.
    19.Princeton Applied Research, “Basics of Electrochemical Impedance Spectroscopy”, Application Note AC-1
    20.M. Kabasakaloglu, T. Kiyak, O. Sendil, A. Asan, “Electrochemical behavior of brass in 0.1 M NaCl”, Appl. Surf. Sci. 193 (2002) 167 – 174.
    21.M.C. Li, C.L. Zeng, S.Z. Luo, J.N. Shen, H.C. Lin, C.N. Cao, “Electrochemical corrosion characteristics of type 316 stainless steel in simulated anode environment for PEMFC”, Electrochim. Acta 48 (2003) 1735-1741.
    22.F.F. Marzo, A. Altube, A.R. Pierna, “A comparative study, by EIS and Tafel experiments, of the electrochemical behavior of FINEMET alloys modified with chromium”, Electrochim. Acta 47 (2002) 2265-2269.
    23.J. Kramer, Z. Phys., 37, 639, (1934).
    24.J. Kramer, Annln Phys., 37, 19, (1934).
    25.A. Bremer, D. E. Couch and E. K. Williams, J. Res. Natn. Bur. Stand., 44, 109, (1950).
    26.P. Duwez, Trans. Am. Soc. Metals, 60, 607, (1967).
    27.H. W. Kui, A. L. Greer and D. Turnbull, Applied Physics Letters, 45, 6, 615-616,(1984).
    28.A. Inoue, K. Kita, T. Masumoto and K. Ohtera, Japanese Journal of Appled Physics Part 2-letters, 27, 10, 1796-1799, (1998).
    29.A. Inoue, K. Kita, T. Masumoto and T. Zhang, Materials Transactions, JIM, 30, 9, 722-725, (1989).
    30.A. Inoue and T. Masumoto and T. Zhang, Materials Transactions, JIM, 31, 3, 177-183, (1999).
    31.A. Inoue and T. Masumoto, U.S. Patent No. 5032196, Japanese Patent 07-122120.
    32.A. Peker and W. L. Johnson, Applied Physics Letters, 63, 17 2342-2344, (1993).
    33.A. Inoue, T. Zhang, K. Ohba and T. Shibata, Materials Transactions, JIM, 36, 7, 876-878, (1995).
    34.A. Inoue. And J. S. Gook, Materials Transactions, JIM, 36, 10, 1282-1285,(1995).
    35.A. Inoue, N. Nishiyama and T. Matsuda, Materials Transactions, JIM, 37, 2, 181-184,(1996).
    36.Y. He, T. D. Shen, and R. B. Schwarz, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 29, 7, 1795-1804, (1998).
    37.T. Zhang and A. Inoue, Materials Transactions, JIM, 39, 10, 1001-1006, (1998).
    38.A. Inoue and T. Zhang, Materials Transactions, JIM, 40, 301, (1999).
    39.A. Inoue and T. Zhang and A. Takeuchi, Applied Physics Letters, 71, 4, 464-466, (1997).
    40.A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, Materials Transactions, JIM, 33, 10, 937-945, (1992).
    41.A. Inoue, T. Nakamura, T. Sugita, T. Zhang and T. Masumoto, Materials Transactions, JIM, 34, 4, 351-358, (1993).
    42.A. Inoue and T. Zhang, Materials Transactions, JIM, 37, 2, 185-187, (1996).
    43.A. Inoue, Bulk Amorphous Alloys, 2, Trans. Tech. Publications, Zurich, 28, (1999).
    44.A. Inoue and N. Nishiyama, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 226, June, 401-405, (1997).
    45.H. S. Chen, H. J. Leamy and C. E. Miller, Annual Review of Materials.
    46.B. B. Prasad, T. R. Anantharaman, A. K. Bhatnagar, D. Ganesan and R. Jagannathan, Journal of Non-crystalline Solids, 61-2, Jan, 391-395, (1984).
    47.H. Jones, Rapid Solidification of Metals and Alloys, Inst. Of Metallurgists, London, 1982.
    48.F. G. Yost, Journal of Materials Science, 16, 11, 3039-3044, (1981).
    49.Tait WS. An introduction to electrochemical corrosion testing for practicing engineers and scientists. Pair O Docs, Wisconsin, (1994).
    50.Macdonald JR. Impedance Spectroscopy. John Wiley & Sons, New York, (1987).
    51.Mansfeld F. Electrochemical impedance spectroscopy (EIS) as a new tool for investigating methods of corrosion protection. Electrochem. Acta, 35 (1990) 1533.
    52.謝淵清, 電化學反應程式, 徐氏基金會出版, 民國72年.
    53.萬其超, 電化學之原理與應用, 徐氏基金會出版, 民國85年.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE