研究生: |
莊上毅 Chuang, Shang I |
---|---|
論文名稱: |
利用常壓電漿對鋰電池負極材料進行氮摻雜以提升其電性表現 Rapid Nitrogen-doping in Lithium-ion Battery Anodes via Atmospheric Pressure Plasma Treatment for Enhanced Electrochemical Performances |
指導教授: |
杜正恭
Duh, Jenq Gong |
口試委員: |
李志偉
Lee, Jyh Wei 魏大欽 Wei, Ta Chin |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 93 |
中文關鍵詞: | 常壓電漿 、氮摻雜 、鋰電池 、二氧化鈦 、氧化還原石墨稀 |
外文關鍵詞: | atmospheric pressure plasma, nitrogen doping, lithium-ion battery, TiO2, reduced graphene oxide |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究開發常壓電漿產生裝置,將之應用於鋰電池負極材料,期望藉由表面改質,提升電性表現。實驗初期探討大氣電漿束對二維還原氧化石墨烯材料表面處理之影響,由表面化學鍵結及拉曼光譜分析發現,電漿能有效改質表面化學鍵結、引入結構缺陷及進行氮原子摻雜,促使電性提升。經過二十次的電漿處理,在0.5安培/克的充電速度下能有將近每克1500毫安培‧小時的電性表現。
為增加有效的電漿處理面積,再開發了另一套對奈米粉末進行電漿表面改質的常壓介電層電漿產生裝置,同時利用此裝置對二氧化鈦粉末進行表面改質。經過20次的電漿處理,在不同充放電的速度下電性能有20%的提升。電漿可有效於表面摻雜氮原子,而表面鈦原子在過程中被還原,形成氧晶格空缺,大幅提高二氧化鈦的鋰離子傳導速率。
本研究復進行電漿診斷,藉實驗分析電漿中被激發或被游離的高能粒子,並綜合表面分析的結果,探討電漿高能粒子與材料表面的反應過程,以推斷可行之電漿表面改質反應機制。氬及氮激發粒子扮演著產生表面結構缺陷的重要角色。游離氮粒子進而藉由這些結構缺陷摻雜進材料當中。根據本研究成果,常壓電漿可具應用於次世代高效率鋰電池開發之潛力。
The main objective of this dissertation is to develop a rapid surface modification technique to enhance the electrochemical performance of lithium-ion battery (LIB) anodes. Atmospheric pressure plasma jet was constructed to introduce surface treatment to reduced graphene oxide (RGO) 2D electrodes. Result from x-ray photoelectron microscopy suggests a change in surface chemical bonding with increasing plasma treatment repetitions. Plasma also introduce surface defects creating nitrogen-doping. After 20 times of Ar+N2 plasma treatment, a significant increment in cycling property (~1500 mAh/g) under 0.5 A/g was found.
In addition, a specially designed atmospheric dielectric barrier discharge plasma generator that are feasible to modify powders is proposed. The rate capacity of 20 min plasma treated TiO2 anode revealed nearly 20% increment as compared to that of pristine TiO2 at the rates of 0.5, 1, 2, 5, 10 C. As-treated TiO2 was first analyzed by X-ray diffractometer and high resolution transmission electron microscope to confirm that there was no noticeable surface morphology and microstructure change from plasma treatment. In addition, plasma treated TiO2 were reduced before nitrogen-doping were doped with increasing treatment duration.
Significant amount of excited argon (Ar*) and excitation of nitrogen second positive system (N2*) was discovered using optical emission spectroscopy. It was believed that Ar* and N2* contributed to formation of surface defects. After forming defects the decomposed N in the plasma can thus be doped onto the surface of RGO and TiO¬2. Plasma surface modification leads to defect formation as well as nitrogen-doping. By integrating plasma diagnosis and surface characterization, dynamic plasma-surface interaction can thus be proposed to provide further guidelines for plasma surface modifications of LIB anodes. These findings help the understanding of the atmospheric plasma treatment on the surface modification of RGO and TiO2 anode material in Li-ion battery.
1. Tarascon, J.M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(6861): p. 359-367.
2. Wei, D., Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Letters, 2009. 9(5): p. 1752-1758.
3. Luo, Z., S. Lim, Z. Tian, J. Shang, L. Lai, B. MacDonald, C. Fu, Z. Shen, T. Yu, and J. Lin, Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property. Journal of Materials Chemistry, 2011. 21(22): p. 8038.
4. Qu, L., Y. Liu, J.-B. Baek, and L. Dai, Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano, 2010. 4(3): p. 1321-1326.
5. Reddy, A.L., A. Srivastava, S.R. Gowda, H. Gullapalli, M. Dubey, and P.M. Ajayan, Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano, 2010. 4(11): p. 6337-42.
6. Jin, Z., J. Yao, C. Kittrell, and J.M. Tour, Large-Scale Growth and Characterizations of Nitrogen-Doped Monolayer Graphene Sheets. ACS Nano, 2011. 5(5): p. 4112-4117.
7. Zhang, C., L. Fu, N. Liu, M. Liu, Y. Wang, and Z. Liu, Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources. Adv Mater, 2011. 23(8): p. 1020-4.
8. Choucair, M., P. Thordarson, and J.A. Stride, Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat Nano, 2009. 4(1): p. 30-33.
9. Deng, D., X. Pan, L. Yu, Y. Cui, Y. Jiang, J. Qi, W.-X. Li, Q. Fu, X. Ma, Q. Xue, G. Sun, and X. Bao, Toward N-Doped Graphene via Solvothermal Synthesis. Chemistry of Materials, 2011. 23(5): p. 1188-1193.
10. Subrahmanyam, K.S., L.S. Panchakarla, A. Govindaraj, and C.N.R. Rao, Simple Method of Preparing Graphene Flakes by an Arc-Discharge Method. The Journal of Physical Chemistry C, 2009. 113(11): p. 4257-4259.
11. Panchakarla, L.S., K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare, and C.N.R. Rao, Synthesis, Structure, and Properties of Boron- and Nitrogen-Doped Graphene. Advanced Materials, 2009: p. NA-NA.
12. Wang, H., C. Zhang, Z. Liu, L. Wang, P. Han, H. Xu, K. Zhang, S. Dong, J. Yao, and G. Cui, Nitrogen-doped graphene nanosheets with excellent lithium storage properties. Journal of Materials Chemistry, 2011. 21(14): p. 5430.
13. Wu, Z.-S., W. Ren, L. Xu, F. Li, and H.-M. Cheng, Doped Graphene Sheets As Anode Materials with Superhigh Rate and Large Capacity for Lithium Ion Batteries. ACS Nano, 2011. 5(7): p. 5463-5471.
14. Lin, Y.-P., Y. Ksari, J. Prakash, L. Giovanelli, J.-C. Valmalette, and J.-M. Themlin, Nitrogen-doping processes of graphene by a versatile plasma-based method. Carbon, 2014. 73: p. 216-224.
15. Li, X., H. Wang, J.T. Robinson, H. Sanchez, G. Diankov, and H. Dai, Simultaneous Nitrogen Doping and Reduction of Graphene Oxide. Journal of the American Chemical Society, 2009. 131(43): p. 15939-15944.
16. Kim, H.T., C.-d. Kim, and C. Park, Reduction and nitridation of graphene oxide (GO) films at room temperature using inductively coupled NH3 plasma. Vacuum, 2014. 108: p. 35-38.
17. Lin, Y.-C., C.-Y. Lin, and P.-W. Chiu, Controllable graphene N-doping with ammonia plasma. Applied Physics Letters, 2010. 96(13): p. 133110.
18. Lee, S.W., C. Mattevi, M. Chhowalla, and R.M. Sankaran, Plasma-Assisted Reduction of Graphene Oxide at Low Temperature and Atmospheric Pressure for Flexible Conductor Applications. The Journal of Physical Chemistry Letters, 2012. 3(6): p. 772-777.
19. Jeong, H.M., J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, and J.W. Choi, Nitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes. Nano Letters, 2011. 11(6): p. 2472-2477.
20. Tsai, C.-W., M.-H. Tu, C.-J. Chen, T.-F. Hung, R.-S. Liu, W.-R. Liu, M.-Y. Lo, Y.-M. Peng, L. Zhang, J. Zhang, D.-S. Shy, and X.-K. Xing, Nitrogen-doped graphene nanosheet-supported non-precious iron nitride nanoparticles as an efficient electrocatalyst for oxygen reduction. RSC Advances, 2011. 1(7): p. 1349-1357.
21. Sheng, Z.-H., L. Shao, J.-J. Chen, W.-J. Bao, F.-B. Wang, and X.-H. Xia, Catalyst-Free Synthesis of Nitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysis. ACS Nano, 2011. 5(6): p. 4350-4358.
22. Shao, Y., S. Zhang, M.H. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu, I.A. Aksay, and Y. Lin, Nitrogen-doped graphene and its electrochemical applications. Journal of Materials Chemistry, 2010. 20(35): p. 7491.
23. Lv, R., Q. Li, A.R. Botello-Mendez, T. Hayashi, B. Wang, A. Berkdemir, Q. Hao, A.L. Elias, R. Cruz-Silva, H.R. Gutierrez, Y.A. Kim, H. Muramatsu, J. Zhu, M. Endo, H. Terrones, J.C. Charlier, M. Pan, and M. Terrones, Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Sci Rep, 2012. 2: p. 586.
24. Guo, B., Q. Liu, E. Chen, H. Zhu, L. Fang, and J.R. Gong, Controllable N-Doping of Graphene. Nano Letters, 2010. 10(12): p. 4975-4980.
25. Yoon, S., C.A. Bridges, R.R. Unocic, and M.P. Paranthaman, Mesoporous TiO2 spheres with a nitridated conducting layer for lithium-ion batteries. Journal of Materials Science, 2013. 48(15): p. 5125-5131.
26. Zhang, W. and D. Liu, Nitrogen-treated Hierarchical Macro-/Mesoporous TiO2 Used as Anode Materials for Lithium Ion Batteries with High Performance at Elevated Temperatures. Electrochimica Acta, 2015. 156: p. 53-59.
27. Cherian, C.T., M.V. Reddy, T. Magdaleno, C.-H. Sow, K.V. Ramanujachary, G.V.S. Rao, and B.V.R. Chowdari, (N,F)-Co-doped TiO2: synthesis, anatase–rutile conversion and Li-cycling properties. CrystEngComm, 2012. 14(3): p. 978-986.
28. Ventosa, E., W. Xia, S. Klink, F. La Mantia, B. Mei, M. Muhler, and W. Schuhmann, Ammonia-annealed TiO2 as a negative electrode material in li-ion batteries: N doping or oxygen deficiency? Chemistry, 2013. 19(42): p. 14194-9.
29. Samiee, M. and J. Luo, A facile nitridation method to improve the rate capability of TiO2 for lithium-ion batteries. Journal of Power Sources, 2014. 245: p. 594-598.
30. Burda, C., Y. Lou, X. Chen, A.C.S. Samia, J. Stout, and J.L. Gole, Enhanced Nitrogen Doping in TiO2 Nanoparticles. Nano Letters, 2003. 3(8): p. 1049-1051.
31. Kim, J.E., D.U. Lee, and S.C. Min, Microbial decontamination of red pepper powder by cold plasma. Food microbiology, 2014. 38: p. 128-36.
32. Patra, N., J. Hladik, M. Pavlatová, J. Militký, and L. Martinová, Investigation of plasma-induced thermal, structural and wettability changes on low density polyethylene powder. Polymer Degradation and Stability, 2013. 98(8): p. 1489-1494.
33. Bormashenko, E. and R. Grynyov, Plasma treatment allows water suspending of the natural hydrophobic powder (lycopodium). Colloids and surfaces. B, Biointerfaces, 2012. 97: p. 171-4.
34. Arpagaus, C., A. Rossi, and P. Rudolf von Rohr, Short-time plasma surface modification of HDPE powder in a Plasma Downer Reactor – process, wettability improvement and ageing effects. Applied Surface Science, 2005. 252(5): p. 1581-1595.
35. Arpagaus, C., P. Rudolf von Rohr, and A. Rossi, Short-time plasma surface modification of polymer powders in a down flowing tube reactor. Surface and Coatings Technology, 2005. 200(1-4): p. 525-528.
36. Mutel, B., M. Bigan, and H. Vezin, Remote nitrogen plasma treatment of a polyethylene powder. Applied Surface Science, 2004. 239(1): p. 25-35.
37. Trejo-Tzab, R., J.J. Alvarado-Gil, P. Quintana, and P. Bartolo-Pérez, N-doped TiO2 P25/Cu powder obtained using nitrogen (N2) gas plasma. Catalysis Today, 2012. 193(1): p. 179-185.
38. Matsubara, K., M. Danno, M. Inoue, Y. Honda, and T. Abe, Characterization of nitrogen-doped TiO2 powder prepared by newly developed plasma-treatment system. Chemical Engineering Journal, 2012. 181-182: p. 754-760.
39. Matsubara, K., M. Danno, M. Inoue, Y. Honda, N. Yoshida, and T. Abe, Characterization of titanium particles treated with N2 plasma using a barrel-plasma-treatment system. Physical chemistry chemical physics : PCCP, 2013. 15(14): p. 5097-107.
40. Muhammad Hafiz, S., R. Ritikos, T.J. Whitcher, N. Md. Razib, D.C.S. Bien, N. Chanlek, H. Nakajima, T. Saisopa, P. Songsiriritthigul, N.M. Huang, and S.A. Rahman, A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide. Sensors and Actuators B: Chemical, 2014. 193: p. 692-700.
41. Liu, H.W., S.P. Liang, T.J. Wu, H. Chang, P.K. Kao, C.C. Hsu, J.Z. Chen, P.T. Chou, and I.C. Cheng, Rapid atmospheric pressure plasma jet processed reduced graphene oxide counter electrodes for dye-sensitized solar cells. ACS Appl Mater Interfaces, 2014. 6(17): p. 15105-12.
42. Tendero, C., C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, Atmospheric pressure plasmas: A review. Spectrochimica Acta Part B: Atomic Spectroscopy, 2006. 61(1): p. 2-30.
43. Pan, D., S. Wang, B. Zhao, M. Wu, H. Zhang, Y. Wang, and Z. Jiao, Li Storage Properties of Disordered Graphene Nanosheets. Chemistry of Materials, 2009. 21(14): p. 3136-3142.
44. Guo, P., H. Song, and X. Chen, Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochemistry Communications, 2009. 11(6): p. 1320-1324.
45. Wang, G., X. Shen, J. Yao, and J. Park, Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon, 2009. 47(8): p. 2049-2053.
46. Lian, P., X. Zhu, S. Liang, Z. Li, W. Yang, and H. Wang, Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochimica Acta, 2010. 55(12): p. 3909-3914.
47. Zhu, X., Y. Zhu, S. Murali, M.D. Stoller, and R.S. Ruoff, Nanostructured Reduced Graphene Oxide/Fe2O3 Composite As a High-Performance Anode Material for Lithium Ion Batteries. ACS Nano, 2011. 5(4): p. 3333-3338.
48. Liu, W.-R., Characterization and Electrochemical Behavior of Graphene-Based Anode for Li-Ion Batteries. The Open Materials Science Journal, 2011. 5(1): p. 236-241.
49. Cheng, C.-S., W.-R. Liu, and F.-M. Wang, A novel ionic host solid electrolyte interface formation on reduced graphene oxide of lithium ion battery. Electrochimica Acta, 2013. 106(0): p. 425-431.
50. Kuo, S.-L., W.-R. Liu, C.-P. Kuo, N.-L. Wu, and H.-C. Wu, Lithium storage in reduced graphene oxides. Journal of Power Sources, 2013. 244(0): p. 552-556.
51. Wang, H., T. Maiyalagan, and X. Wang, Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications. ACS Catalysis, 2012. 2(5): p. 781-794.
52. Rao, C.N.R., K. Gopalakrishnan, and U. Maitra, Comparative Study of Potential Applications of Graphene, MoS2, and Other Two-Dimensional Materials in Energy Devices, Sensors, and Related Areas. ACS Applied Materials & Interfaces, 2015. 7(15): p. 7809-7832.
53. Yang, Z., D. Choi, S. Kerisit, K.M. Rosso, D. Wang, J. Zhang, G. Graff, and J. Liu, Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review. Journal of Power Sources, 2009. 192(2): p. 588-598.
54. Wagemaker, M., W.J.H. Borghols, and F.M. Mulder, Large Impact of Particle Size on Insertion Reactions. A Case for Anatase LixTiO2. Journal of the American Chemical Society, 2007. 129(14): p. 4323-4327.
55. Park, K.-S., J.-G. Kang, Y.-J. Choi, S. Lee, D.-W. Kim, and J.-G. Park, Long-term, high-rate lithium storage capabilities of TiO2 nanostructured electrodes using 3D self-supported indium tin oxide conducting nanowire arrays. Energy & Environmental Science, 2011. 4(5): p. 1796-1801.
56. Wang, W., M. Tian, A. Abdulagatov, S.M. George, Y.-C. Lee, and R. Yang, Three-Dimensional Ni/TiO2 Nanowire Network for High Areal Capacity Lithium Ion Microbattery Applications. Nano Letters, 2012. 12(2): p. 655-660.
57. Xin, X., X. Zhou, J. Wu, X. Yao, and Z. Liu, Scalable Synthesis of TiO2/Graphene Nanostructured Composite with High-Rate Performance for Lithium Ion Batteries. ACS Nano, 2012. 6(12): p. 11035-11043.
58. Yan, Y., B. Hao, D. Wang, G. Chen, E. Markweg, A. Albrecht, and P. Schaaf, Understanding the fast lithium storage performance of hydrogenated TiO2 nanoparticles. Journal of Materials Chemistry A, 2013. 1(46): p. 14507.
59. Put, S., C. Bertels, and A. Vanhulsel, Atmospheric pressure plasma treatment of polymeric powders. Surface and Coatings Technology, 2013. 234: p. 76-81.
60. Kolacyak, D., J. Ihde, C. Merten, A. Hartwig, and U. Lommatzsch, Fast functionalization of multi-walled carbon nanotubes by an atmospheric pressure plasma jet. J Colloid Interface Sci, 2011. 359(1): p. 311-7.
61. Desmet, T., R. Morent, N.D. Geyter, C. Leys, E. Schacht, and P. Dubruel, Nonthermal Plasma Technology as a Versatile Strategy for Polymeric Biomaterials Surface Modification: A Review. Biomacromolecules, 2009. 10(9): p. 2351-2378.
62. Braithwaite, N.S.J., Introduction to gas discharges. Plasma Sources Science and Technology, 2000. 9(4): p. 517-527.
63. Electric glow discharge. 8/16/2008 [cited 2015 05/25]; Available from: http://www.plasma-universe.com/Electric_glow_discharge.
64. Paschen, F., Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz. Annalen der Physik, 1889. 273(5): p. 69-96.
65. Raizer, Y.P., V.I. Kisin, and J.E. Allen, Gas Discharge Physics. 2011: Springer Berlin Heidelberg.
66. Schutze, A., J.Y. Jeong, S.E. Babayan, J. Park, G.S. Selwyn, and R.F. Hicks, The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. Plasma Science, IEEE Transactions on, 1998. 26(6): p. 1685-1694.
67. Nehra, V., A. Kumar, and H. Dwivedi, Atmospheric non-thermal plasma sources. Int J Eng, 2008. 2(1): p. 53-68.
68. Laimer, J. and H. Störi, Recent Advances in the Research on Non-Equilibrium Atmospheric Pressure Plasma Jets. Plasma Processes and Polymers, 2007. 4(3): p. 266-274.
69. Laroussi, M. and T. Akan, Arc-Free Atmospheric Pressure Cold Plasma Jets: A Review. Plasma Processes and Polymers, 2007. 4(9): p. 777-788.
70. Boulos, I., P. Fauchais, and E. Pfender, Thermal Plasmas. 1994: Springer.
71. Elenbaas, W., The high pressure mercury vapour discharge. 1951: North-Holland Pub. Co.
72. Ocean Optics, I., Spectrometers, Accessories and More. 2011.
73. Arefi-Khonsari, F. Dépôt et traitement des polymères par procédés plasma. in Formation Continue INPG–17ème session–Traitements de Surface par Plasmas. 2003. Grenoble, France.
74. Roth, J.R., Industrial Plasma Engineering: Volume 1: Principles. 1995: CRC Press.
75. Nemchinsky, V.A., Dross formation and heat transfer during plasma arc cutting. Journal of Physics D: Applied Physics, 1997. 30(18): p. 2566-2572.
76. Ramakrishnan, S. and M.W. Rogozinski, Properties of electric arc plasma for metal cutting. Journal of Physics D: Applied Physics, 1997. 30(4): p. 636-644.
77. Gauvin, W.H., Some characteristics of transferred-Arc plasmas. Plasma Chemistry and Plasma Processing, 1989. 9(S1): p. 65S-84S.
78. Mac Rae, D.R., Plasma arc process systems, reactors, and applications. Plasma Chemistry and Plasma Processing, 1989. 9(S1): p. 85S-118S.
79. Gomez, E., D.A. Rani, C.R. Cheeseman, D. Deegan, M. Wise, and A.R. Boccaccini, Thermal plasma technology for the treatment of wastes: A critical review. Journal of Hazardous Materials, 2009. 161(2–3): p. 614-626.
80. Fauchais, P. and A. Vardelle, Thermal plasmas. IEEE Transactions on Plasma Science, 1997. 25(6): p. 1258-1280.
81. Smith, R.W., D. Wei, and D. Apelian, Thermal plasma materials processing - Applications and opportunities. Plasma Chemistry and Plasma Processing, 1989. 9(S1): p. 135S-165S.
82. Padture, N.P., M. Gell, and E.H. Jordan, Thermal barrier coatings for gas-turbine engine applications. Science, 2002. 296(5566): p. 280-4.
83. Wortman, D.J., B.A. Nagaraj, and E.C. Duderstadt, Thermal barrier coatings for gas turbine use. Materials Science and Engineering: A, 1989. 120–121, Part 2(0): p. 433-440.
84. Heberlein, J. and A.B. Murphy, Thermal plasma waste treatment. Journal of Physics D: Applied Physics, 2008. 41(5): p. 053001.
85. Huang, H. and L. Tang, Treatment of organic waste using thermal plasma pyrolysis technology. Energy Conversion and Management, 2007. 48(4): p. 1331-1337.
86. Bonizzoni, G. and E. Vassallo, Plasma physics and technology; industrial applications. Vacuum, 2002. 64(3–4): p. 327-336.
87. Chang, J.S., P.A. Lawless, and T. Yamamoto, Corona discharge processes. IEEE Transactions on Plasma Science, 1991. 19(6): p. 1152-1166.
88. Kawamoto, H., Ozone generation in corona discharge at pin electrode of electrophotographic charger. Journal of Imaging Science and Technology, 2000. 44(5): p. 452-456.
89. Pai, D.M. and B.E. Springett, Physics of electrophotography. Reviews of Modern Physics, 1993. 65(1): p. 163-211.
90. Sugiarto, A.T. and M. Sato, Pulsed plasma processing of organic compounds in aqueous solution. Thin solid films, 2001. 386(2): p. 295-299.
91. Locke, B.R. and K.-Y. Shih, Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water. Plasma Sources Science and Technology, 2011. 20(3): p. 034006.
92. Guo, H., C. Geng, Z. qin, and C. Chen, Hydrophilic modification of HDPE microfiltration membrane by corona-induced graft polymerization. Desalination and Water Treatment, 2013. 51(19-21): p. 3810-3813.
93. Novák, I., V. Pollák, and I. Chodák, Study of Surface Properties of Polyolefins Modified by Corona Discharge Plasma. Plasma Processes and Polymers, 2006. 3(4-5): p. 355-364.
94. Osawa, S., T. Yokoyama, M. Hanada, and T. Ogawa, Control of Degradation Rate of Biodegradable Polymers by Corona Discharge Treatment. KOBUNSHI RONBUNSHU, 2001. 58(11): p. 581-587.
95. Fauchais, P. and A. Vardelle, Pending problems in thermal plasmas and actual development. Plasma Physics and Controlled Fusion, 2000. 42(12B): p. B365.
96. Borcia, G., N. Dumitrascu, and G. Popa, Influence of helium-dielectric barrier discharge treatments on the adhesion properties of polyamide-6 surfaces. Surface and Coatings Technology, 2005. 197(2–3): p. 316-321.
97. D’Sa, R.A., G.A. Burke, and B.J. Meenan, Protein adhesion and cell response on atmospheric pressure dielectric barrier discharge-modified polymer surfaces. Acta Biomaterialia, 2010. 6(7): p. 2609-2620.
98. Yildirim, E.D., H. Ayan, V.N. Vasilets, A. Fridman, S. Guceri, and W. Sun, Effect of Dielectric Barrier Discharge Plasma on the Attachment and Proliferation of Osteoblasts Cultured over Poly(ɛ-caprolactone) Scaffolds. Plasma Processes and Polymers, 2008. 5(1): p. 58-66.
99. Hähnel, M., T. von Woedtke, and K.-D. Weltmann, Influence of the Air Humidity on the Reduction ofBacillusSpores in a Defined Environment at Atmospheric Pressure Using a Dielectric Barrier Surface Discharge. Plasma Processes and Polymers, 2010. 7(3-4): p. 244-249.
100. Eto, H., Y. Ono, A. Ogino, and M. Nagatsu, Low-temperature sterilization of wrapped materials using flexible sheet-type dielectric barrier discharge. Applied Physics Letters, 2008. 93(22): p. 221502.
101. Montie, T.C., K. Kelly-Wintenberg, and J.R. Roth, An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE Transactions on Plasma Science, 2000. 28(1): p. 41-50.
102. Daeschlein, G., S. Scholz, T. von Woedtke, M. Niggemeier, E. Kindel, R. Brandenburg, K.D. Weltmann, Ju, x, and M. nger, In Vitro Killing of Clinical Fungal Strains by Low-Temperature Atmospheric-Pressure Plasma Jet. Plasma Science, IEEE Transactions on, 2011. 39(2): p. 815-821.
103. Daeschlein, G., T. von Woedtke, E. Kindel, R. Brandenburg, K.-D. Weltmann, and M. Jünger, Antibacterial Activity of an Atmospheric Pressure Plasma Jet Against Relevant Wound Pathogens in vitro on a Simulated Wound Environment. Plasma Processes and Polymers, 2010. 7(3-4): p. 224-230.
104. Koban, I., R. Matthes, N.-O. Hübner, A. Welk, P. Meisel, B. Holtfreter, R. Sietmann, E. Kindel, K.-D. Weltmann, A. Kramer, and T. Kocher, Treatment ofCandida albicansbiofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet. New Journal of Physics, 2010. 12(7): p. 073039.
105. Laroussi, M., Low-Temperature Plasma Jet for Biomedical Applications: A Review. Plasma Science, IEEE Transactions on, 2015. 43(3): p. 703-712.
106. Schneider, S., J.-W. Lackmann, D. Ellerweg, B. Denis, F. Narberhaus, J.E. Bandow, and J. Benedikt, The Role of VUV Radiation in the Inactivation of Bacteria with an Atmospheric Pressure Plasma Jet. Plasma Processes and Polymers, 2012. 9(6): p. 561-568.
107. Okubo, M., M. Tahara, N. Saeki, and T. Yamamoto, Surface modification of fluorocarbon polymer films for improved adhesion using atmospheric-pressure nonthermal plasma graft-polymerization. Thin Solid Films, 2008. 516(19): p. 6592-6597.
108. Xian-Jun, S., Z. Guan-Jun, J.-Y. Zhan, and X. Gui-Min, Research on Surface Modification of Polytetrafluoroethylene Coupled With Argon Dielectric Barrier Discharge Plasma Jet Characteristics. Plasma Science, IEEE Transactions on, 2011. 39(11): p. 3095-3102.
109. Contini, C., M.G. Katsikogianni, F.T. O’Neill, M. O’Sullivan, F. Boland, D.P. Dowling, and F.J. Monahan, Storage Stability of an Antioxidant Active Packaging Coated with Citrus Extract Following a Plasma Jet Pretreatment. Food and Bioprocess Technology, 2013. 7(8): p. 2228-2240.
110. Farhat, S., M. Gilliam, M. Rabago-Smith, C. Baran, N. Walter, and A. Zand, Polymer coatings for biomedical applications using atmospheric pressure plasma. Surface and Coatings Technology, 2014. 241(0): p. 123-129.
111. Caquineau, H., L. Aiche, H. Vergnes, B. Despax, and B. Caussat, Low temperature silicon oxide deposition on polymer powders in a fluidized bed coupled to a cold remote plasma. Surface and Coatings Technology, 2012. 206(23): p. 4814-4821.
112. Bretagnol, F., M. Tatoulian, F. Arefi-Khonsari, G. Lorang, and J. Amouroux, Surface modification of polyethylene powder by nitrogen and ammonia low pressure plasma in a fluidized bed reactor. Reactive and Functional Polymers, 2004. 61(2): p. 221-232.
113. Píchal, J., J. Hladík, and P. Špatenka, Atmospheric-Air Plasma Surface Modification of Polyethylene Powder. Plasma Processes and Polymers, 2009. 6(2): p. 148-153.
114. Roth, C., Z. Künsch, A. Sonnenfeld, and P. Rudolf von Rohr, Plasma surface modification of powders for pharmaceutical applications. Surface and Coatings Technology, 2011. 205: p. S597-S600.
115. Hummers, W.S. and R.E. Offeman, Preparation of Graphitic Oxide. Journal of the American Chemical Society, 1958. 80(6): p. 1339-1339.
116. Biddinger, E.J., D. von Deak, and U.S. Ozkan, Nitrogen-Containing Carbon Nanostructures as Oxygen-Reduction Catalysts. Topics in Catalysis, 2009. 52(11): p. 1566-1574.
117. Kudin, K.N., B. Ozbas, H.C. Schniepp, R.K. Prud'homme, I.A. Aksay, and R. Car, Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets. Nano Letters, 2008. 8(1): p. 36-41.
118. Wu, Z.-S., W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, D. Tang, B. Yu, C. Jiang, and H.-M. Cheng, Synthesis of Graphene Sheets with High Electrical Conductivity and Good Thermal Stability by Hydrogen Arc Discharge Exfoliation. ACS Nano, 2009. 3(2): p. 411-417.
119. Soin, N., S. Sinha Roy, S. Roy, K.S. Hazra, D.S. Misra, T.H. Lim, C.J. Hetherington, and J.A. McLaughlin, Enhanced and Stable Field Emission from in Situ Nitrogen-Doped Few-Layered Graphene Nanoflakes. The Journal of Physical Chemistry C, 2011. 115(13): p. 5366-5372.
120. Moulder, J.F., J. Chastain, and R.C. King, Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. 1992: Perkin-Elmer Eden Prairie, MN.
121. Bayram, S.B. and M.V. Freamat, Vibrational spectra of N2: An advanced undergraduate laboratory in atomic and molecular spectroscopy. American Journal of Physics, 2012. 80(8): p. 664.
122. Gilmore, F.R., Potential energy curves for N2, NO, O2 and corresponding ions. Journal of Quantitative Spectroscopy and Radiative Transfer, 1965. 5(2): p. 369-IN3.
123. Bruggeman, P.J., N. Sadeghi, D.C. Schram, and V. Linss, Gas temperature determination from rotational lines in non-equilibrium plasmas: a review. Plasma Sources Science and Technology, 2014. 23(2): p. 023001.