簡易檢索 / 詳目顯示

研究生: 黃亦娟
Huang, Yi-Chuan
論文名稱: 低溫水溶液下合成具可調控粒徑大小的硒化銅奈米粒子及其尺寸光學及光熱效應
Low-temperature synthesis of size-tunable Cu3Se2 nanocubes in aqueous solution and their size-dependent light absorption and photothermal properties
指導教授: 黃暄益
Huang, Hsuan-Yi
口試委員: 黃正良
Huang, Cheng-Liang
周苡嘉
Chou, Yi-Chia
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 37
中文關鍵詞: 硒化銅奈米粒子尺寸光學效應
外文關鍵詞: Copper selenide nanocubes, Size-dependent optical properties.
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因為硒類前驅物通常難以溶於水相中,因此很難在水相下合成具形狀及尺寸控制的金屬硒化物奈米粒子。在本篇論文中,我們成功的在水溶液及溫和的條件下合成具形貌及尺寸控制的硒化銅奈米粒子。我們利用調整氫氧化鈉的量來控制硒化銅奈米粒子的尺寸,並深入探討反應機制,了解控制奈米粒子的形狀及尺寸的機制。我們觀察到硒化銅奈米粒子的能隙隨著其尺寸的增長而變小,即使硒化銅奈米粒子的尺寸大於其波爾半徑,其能隙仍然持續變化,這個現象無法用量子侷限效應來解釋,並證明了奈米粒子的尺寸光學效應。此外,硒化銅在近紅外波長的區域有明顯的吸收,我們利用光熱實驗證實了此區域的吸收是源自於硒化銅奈米粒子的等離子體性質。


    Since selenide sources generally cannot be dissolved in water directly, the synthesis of size- and shape-controlled metal selenide nanocrystals in aqueous phase is rarely reported. In this study, we have developed an efficient way to synthesize Cu3Se2 nanocubes in aqueous solution under mild condition. The Cu3Se2 nanocubes ranging from 35 nm to 86 nm were synthesized by adjusting the amount of NaOH added, and the formation mechanism is discussed. We can observe the band gap of Cu3Se2 nanocubes decreasing with increasing particle size. Even though the nanocubes are fairly large, their band gaps still exhibit continuous shifts, in contrary to the known quantum confinement effects. In addition, their intensive plasmon absorption peak in NIR region makes them a potential candidate for photothermal applications.

    摘要 I ABSTRACT II TABLE OF CONTENTS III LIST OF TABLES V LIST OF FIGURES VI LIST OF SCHEME IX 1 Introduction 1 1.1 Size- and shape-tunable metal selenide nanocrystals 3 1.2 Copper selenide 7 1.2.1 Synthesis of Cu3Se2 nanocrytals in organic phase 8 1.2.2 Synthesis of Cu3Se2 nanocrystals in aqueous phase 9 1.3 Selenium source 10 2 Experiment Section 13 2.1 Chemicals 13 2.2 Synthesis of Na2SeSO3 13 2.3 Synthesis of Cu3Se2 nanocubes with tunable size 14 2.4 Photothermal measurements 16 2.4.1 Irradiated by 808 nm laser 16 2.4.2 Irradiated by 1064 nm laser 17 2.5 Test of the NaOH concentration effect 17 2.6 Instrumentation 18 3 Results and Discussion 19 3.1 Formation mechanism and characterization of Cu3Se2 nanocubes 19 3.2 The influence of NaOH 24 3.3 Optical properties 26 3.4 Plasmonic properties 28 4 Conclusion 31 5 References 32

    1. Huang, J.-Y.; Mahesh, M.; Huang, M. H. Modified Semiconductor Band Diagrams Constructed from Optical Characterization of Size-Tunable Cu2O Cubes, Octahedra, and Rhombic Dodecahedra. J. Phys. Chem. C 2018, 122, 13027–13033.
    2. Ke, W.-H.; Hsia, C.-F.; Chen, Y.-J.; Huang, M. H. Synthesis of Ultrasmall Cu2O Nanocubes and Octahedra with Tunable Sizes for Facet-Dependent Optical Property Examination. Small 2016, 12, 3530–3534.
    3. Hsieh, P.-L.; Naresh, G.; Huang, Y.-S.; Tsao, C.-W.; Hsu, Y.-J.; Chen, L.-J.; Huang, M. H. Shape-Tunable SrTiO3 Crystals Revealing Facet-Dependent Optical and Photocatalytic Properties. J. Phys. Chem. C 2019, 123, 13664–13671.
    4. Hsieh, M.-S.; Su, H.-J.; Hsieh, P.-L.; Chiang, Y.-W.; Huang, M. H. Synthesis of Ag3PO4 Crystals with Tunable Shapes for Facet-Dependent Optical Property, Photocatalytic Activity, and Electrical Conductivity Examinations. ACS Appl. Mater. Interfaces 2017, 9, 39086–39093.
    5. Yousefi, R. Metal Chalcogenide Semiconductor Nanostructures and Their Applications in Renewable Energy. Wiley, 2014, pp. 45–81.
    6. Ng, M. T.; Boothroyd, C.; Vittal, J. J. Shape and Size Control of Ag2Se Nanocrystals from a Single Precursor [(Ph3P)3Ag2(SeC{O}Ph)2]. Chem. Commun. 2005, 3820–3822.
    7. Koo, B.; Patel, R. N.; Korgel, B. A. Synthesis of CuInSe2 Nanocrystals with Trigonal Pyramidal Shape. J. Am. Chem. Soc. 2009, 131, 3134–3135.
    8. Reifsnyder, D. C.; Ye, X.; Gordon, T. R.; Song, C.; Murray, C. B. Three-Dimensional Self-Assembly of Chalcopyrite Copper Indium Diselenide Nanocrystals into Oriented Films. ACS Nano 2013, 7, 4307–4315.
    9. Chiu, M.-S.; Lin, C.-C.; Lee, A.-T.; Huang, Y.-C.; Huang, M. H. Aqueous-Phase Synthesis of Size-Tunable PbSe Nanocubes at Room Temperature for Optical Property Characterization. Chem.–Eur. J. 2019, 25, 367–372.
    10. Zhang, L.; Zhao, S.; Li, Y.; Lan, Y.; Han, M.; Dai, Z.; Bao, J. Monoclinic Copper(I) Selenide Nanocrystals and Copper(I) Selenide/Palladium Heterostructures: Synthesis, Characterization, and Surface‐Enhanced Raman Scattering Performance. Eur. J. Inorg. Chem. 2015, 13, 2229–2236.
    11. Coughlan, C.; Ibáñez, M.; Dobrozhan, O.; Singh, A.; Cabot, A.; Ryan, K. M. Compound Copper Chalcogenide Nanocrystals. Chem. Rev. 2017, 117, 5865–6109.
    12. Palve, B. M.; Jadkar, S. R.; Pathan, H. M. A Simple Chemical Route to Synthesize the Umangite Phase of Copper Selenide (Cu3Se2) Thin Film at Room Temperature J. Semicond. 2017, 38, 063003.
    13. Petrović, M.; Gilić, M.; Ćirković, J.; Romčević, M.; Romčević, N.; Trajić, J. Yahia, I. Optical Properties of CuSe Thin Films – Band Gap Determination. Sci. Sinter. 2017, 49, 167–174.
    14. Bai, H. W.; Shen, T.; Wang, S. X.; Li, B.; Cao, G. Z.; Tian, J. J. Controlled Growth of Cu3Se2 Nanosheets Array Counter Electrode for Quantum Dots Sensitized Solar Cell through Ion Exchange. Sci. China Mater. 2017, 60, 637–645.
    15. Wang, S.; Shen, T.; Bai, H.; Li, B.; Tian, J. Cu3Se2 Nanostructure as a Counter Electrode for High Efficiency Quantum Dot-Sensitized Solar Cells. J. Mater. Chem. C 2016, 4, 8020–8026.
    16. Palve, B. M.; Jagtap, C. V.; Bhalekar, V. P.; Jadkar, S. R.; Pathan, H. M. Synthesis of Crystalline Umangite Phase of Copper Selenide (Cu3Se2) for TiO2 Photoanode-Based Solar Cell Application. J. Solid State Electrochem. 2017, 21, 2677–2685.
    17. Haram, S. K.; Santhanam, K. S. V. Electroless Deposition on Copper Substrates and Characterization of Thin Films of Copper (I) Selenide. Mat. Res. Bull. 1992, 27, 1185–1191.
    18. Hessel, C. M.; Pattani, V. P.; Rasch, M.; Panthani, M. G.; Koo, B.; Tunnell, J. W.; Korgel, B. A. Copper Selenide Nanocrystals for Photothermal Therapy. Nano Lett. 2011, 11, 6, 2560–2566.
    19. Dorfs, D.; Härtling, T.; Miszta, K.; Bigall, N. C.; Kim, M. R.; Genovese, A.; Falqui, A.; Povia, M.; Manna, L. Reversible Tunability of the Near-Infrared Valence Band Plasmon Resonance in Cu2–xSe Nanocrystals. J. Am. Chem. Soc. 2011, 133, 11175–11180.
    20. Lakshmi, M.; Bindu, K.; Bini, S. Vijayakumar, K. P.; Kartha, C. S.; Abe, T.; Kashiwaba, Y. Reversible Cu2−xSe↔Cu3Se2 Phase Transformation in Copper Selenide Thin Films Prepared by Chemical Bath Deposition. Thin Solid Films 2001, 386, 127–132.
    21. Li, W.; Zamani, R.; Ibáñez, M.; Cadavid, D.; Shavel, A.; Morante, J. R.; Arbiol, J.; Cabot, A. Metal Ions to Control the Morphology of Semiconductor Nanoparticles: Copper Selenide Nanocubes. J. Am. Chem. Soc. 2013, 135, 4664–4667.
    22. Yan, Y. L.; Qian, X. F.; Xu, H. J.; Yin, J.; Zhu, Z. K. A Novel Solid–Liquid Route for the Preparation of Cu3Se2 and Ag2Se Nanocrystals. Inorg. Chem. Commun. 2003, 6, 34–37.
    23. Xie, Y.; Zheng, X.; Jiang, X.; Lu, J.; Zhu, L. Sonochemical Synthesis and Mechanistic Study of Copper Selenides Cu2-xSe, β-CuSe, and Cu3Se2. Inorg. Chem. 2002, 41, 387–392.
    24. Qiao, L.-N.; Wang, H.-C.; Shen, Y.; Lin, Y.-H.; Nan, C.-W. Enhanced Photocatalytic Performance under Visible and Near-Infrared Irradiation of Cu1.8Se/Cu3Se2 Composite via a Phase Junction. J. Nanomater. 2017, 7, 19.
    25. Wang, Y.; Yang, H.; Xia, Z.; Tong, Z.; Zhou, L. One-Pot Synthesis of CdSe Quantum Dots Using Selenium Dioxide as a Selenium Source in Aqueous Solution. Bull. Korean Chem. Soc. 2011, 32, 2316–2318.
    26. Khan, Z. M.; Khan, S. A.; Zulfequar, M. Study of Thiol Capped CdSe Quantum Dots Using SeO2 Precursor for Selenium Source. Mater. Sci. Semicond. Process 2017, 57, 190–196.
    27. Sathish, S.; Balakumar, S. Effect of Synthesis Parameters of Polyol Technique on Photoluminescence Properties of ZnSe Nanoparticles. J. Lumin. 2017, 190, 272–278.
    28. Peng, Q.; Dong, Y.; Deng, Z.; Kou, H.; Gao, S.; Li, Y. Selective Synthesis and Magnetic Properties of α-MnSe and MnSe2 Uniform Microcrystals. J. Phys. Chem. B. 2002, 106, 9261–9265.
    29. Mazing, D. S.; Matyushkin, L. B.; Aleksandrova. O. A.; Mikhailov, I. I.; Moshnikov, V. A.; Tarasov, S. A. Synthesis of Cadmium Selenide Colloidal Quantum Dots in Aquatic Medium. J. Phys.: Conf. Ser. 2014, 572, 012028.
    30. Statkutė, G.; Tomašiūnas. R.; Jagminas, A. Copper selenide nanowires and Nanocrystallites in Alumina: Carrier Relaxation Recombination and Trapping. J. Appl. Phys. 2007, 101, 113715.

    QR CODE