簡易檢索 / 詳目顯示

研究生: 謝閔智
Hsieh, Min-Chih
論文名稱: 應用生態式介面設計方法與訊息理論進行核電廠儀控介面之評估與改善
The Investigation on Evaluation and Improvement for the VDU Interface of the Nuclear Power Plant Using Ecological Interface Design and Information Theory
指導教授: 黃雪玲
邱銘傳
口試委員: 王茂駿
王明揚
趙金榮
林久翔
學位類別: 博士
Doctor
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 78
中文關鍵詞: 核電廠主控制室人機介面生態式介面設計電腦化程序書
外文關鍵詞: Nuclear power plant, Main Control Room, Human-Computer Interface, Ecological Interface, Computer-based procedure
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在複雜的控制環境中,良好的人機介面設計可以增進運轉員作業的效率與維持系統的安全。然而,設計者在進行介面開發與設計時,通常會以程式執行的效率為主,忽略了提高程式效率時有可能導致使用者操作上的困擾,進而影響了系統的安全,因此控制系統的介面設計是必須持續地進行研究與改善。在核電廠中,運轉員主要的工作是透過VDU監控系統的狀態並維持運轉的穩定與安全,即使VDU的設計上已經遵循及符合相關設計規範,設計者與使用者之間仍然存在認知上的差距。因此,本研究目的主要是透過兩個實驗來評估主控制室中VDU的介面,第一個實驗應用生態式介面(Ecological interface design, EID)來針對龍門電廠中VDU介面進行改善,而第二個實驗則是以訊息理論(Information theory)來評估電腦化程序書的控制介面中,所呈現資訊量的多寡。
    第一部分的實驗將EID應用於改善核電廠中,三個不同的介面呈現方式,企圖證明EID能夠讓運轉員在不同的操作環境之下,例如不同程度的自動化與緊急事故,可以維持良好的操作績效。本研究透過NASA-TLX與SART問卷來評估受試者在不同條件實驗下的工作負荷與情境知覺。另一方面,第二部分的實驗以電腦化程序書上不同的資訊呈現量來評估受試者在進行作業時的表現,實驗以操作時間與NASA-TLX作為評估受試者績效的指標,且透過記錄次作業績效來評估受試者心智容量的剩餘程度,作為評估受試者在不同資訊量下,作業績效的參考指標。
    第一部分的實驗結果顯示,EID在不同的操作環境下,能顯著提升受試者的操作時間與資訊判斷的正確率,且沒有因為操作速度變快而影響到判斷的準確率。第二部分的實驗結果顯示,受試者在中等資訊量的電腦化程序書中,心智的剩餘量明顯優於低資訊量與高資訊量的電腦化程序書,而工作負荷也明顯低於兩者。而本研究更進一步探究在設計電腦化程序書時的最佳資訊量範圍,結果顯示在介面上出現5~8件個事件時,為最佳的資訊量範圍。
    依據本研究提出之結果,除了可以作為核電廠系統改善的參考,也可以應用於其他具有高度複雜的控制系統的產業中,例如石油產業與化學化工產業等。另一方面也可以提供介面設計者作為參考,減少設計者與使用者在認知上的差異,提升系統操作的安全。


    A well-designed human-computer interface for the visual display unit (VDU) in the control room of a complex environment can enhance operator efficiency and, thus, environmental safety. In fact, a cognitive gap often exists between an interface designer and an interface user. Therefore, the issue of the cognitive gap of interface design needs more improvement and investigation. The main tasks of the operators in the MCR are to constantly monitor the VDU and to ensure the system is stable and functioning normally. While the VDU interface may follow the design guidelines, a cognitive gap may still emerge between designers and users. Hence, the purpose of this research is to evaluate the VDU interface by two experiments. The ecological interface design (EID) framework was utilized in experiment 1 to improve the VDU interface of nuclear power plant (NPP). Experiment 2 is to examine operator performance while using computerized procedures from the perception of the different quantification of information.
    Experiment 1 presents an application of ecological interface design (EID) into three different cases, demonstrating that EID based framework can support operators in any situations, such as different levels of automation (LOA) and emergency situation in a Nuclear Power Plant (NPP) in Taiwan. A simulated feed-water system was developed to present two different interfaces styles. This study applied the NASA-TLX instrument to evaluate mental workload and also applied the situational awareness rating technique (SART) for assessing situation awareness. With regard to the experiment 2, simulated computer-based procedures (CBPs) were developed to present three information quantity styles. Operation time results were recorded to evaluate operator performance. A secondary task performance was incorporated to measure the redundancy of an operator faced with multiple tasks. NASA-TLX was also applied to evaluate the operators’ mental workload.
    The results of experiment 1 suggest that EID-based interface has a remarkable advantage in supporting operator performance in terms of response time and accuracy rate under both normal and emergent situation. The results of experiment 2 suggested that medium information quantity of five to eight events has a remarkable advantage in supporting operator performance under both simple and complex task.
    The results of this study could be a reference and might be applicable to other NPPs in Taiwan, or other complex control systems such as thermal power plant, chemical plants, oil refinery, and air traffic control to improve system reliability as well as life safety in Taiwan.

    ABSTRACT 2 摘要 4 TABLE OF CONTENTS 6 LIST OF FIGURES 8 LIST OF TABLES 10 CHAPTER 1. INTRODUCTION 11 1.1 BACKGROUND AND MOTIVATION 11 1.2 RESEARCH GOALS 13 CHAPTER 2. LITERATURE REVIEW 16 2.1 ECOLOGICAL INTERFACE DESIGN 16 2.2 THE OPERATION PROCEDURES OF NPP 18 2.3 THE QUANTIFICATION OF INFORMATION 23 CHAPTER 3. APPLICATION OF THE EID FRAMEWORK ON VDU INTERFACE REDESIGN 26 3.1 NPP INTERFACE DESIGN ISSUES 26 3.1.1 Case 1: Water Volume Indicator 26 3.1.2 Case 2: Water Level Indicator 28 3.1.3 Case 3: The States of Neutron Flux 29 3.2 METHOD 30 3.2.1 Design of Experiment 30 3.2.2 Experimental Environment and Equipment 33 3.2.3 Participants and Procedures 34 3.3 RESULTS AND DISCUSSIONS 35 3.3.1 Situation Awareness and Workload 35 3.3.2 Observation Performance and Behavior 42 CHAPTER 4. APPLY THE INFORMATION THEORY ON CBP INTERFACE DESIGN 49 4.1 METHOD 49 4.1.1 Independent Variables 49 4.1.2 Dependent Variable 52 4.1.3 Experimental Design and Procedure 54 4.2 EXPERIMENTAL RESULTS AND DISCUSSIONS 56 CHAPTER 5. CONCLUSION 65 5.1 MAIN CONCLUSIONS 65 5.2 RESEARCH CONTRIBUTION 66 5.3 PRACTICAL CONTRIBUTION 67 5.4 FUTURE RESEARCH DIRECTIONS 67 REFERENCES 69 APPENDIX A. NASA-TLX 76 APPENDIX B. SITUATION AWARENESS RATING TECHNIQUE (SART) 78

    Boy, G. A., Schmitt, K. A. (2013). Design for safety: A cognitive engineering approach to the control and management of nuclear power plants. Annals of Nuclear Energy, 52, 125-136.
    Burns, C. M., Hajdukiewicz, J. R. (2004). Ecological Interface Design. USA: CRC Press.
    Burns, C., Jamieson, G., Skraaning, G., Lau, N., Kwok, J. (2007). Supporting situation awareness through ecological interface design. Proceeding of the human factors and ergonomics society 51st annual meeting (Vol. 51(4), pp. 205-209).
    Carvalho, P. V., dos Santos, I. L., Gomes, J. O., Borges, M. R., & Guerlain, S. (2008). Human factors approach for evaluation and redesign of human–system interfaces of a nuclear power plant simulator. Displays, 29(3), 273-284.
    Christoffersen, K., Hunter, C. N., & Vicente, K. J. (1997). A longitudinal study of the effects of ecological interface design on fault management performance. International Journal of Cognitive Ergonomics, 1(1), 1-24.
    Christoffersen, K., Hunter, C. N., & Vicente, K. J. (1998). A longitudinal study of the effects of ecological interface design on deep knowledge. International Journal of Human-Computer Studies, 48(6), 729-762.
    Chuang, C. F., & Chou, H. P. (2008). Design development and implementation of the human-system interface for Lungmen nuclear project. Nuclear Science, IEEE Transactions on, 55(5), 2654-2661.
    Drivalou, S., & Marmaras, N. (2009). Supporting skill-, rule-, and knowledge-based behaviour through an ecological interface: An industry-scale application. International Journal of Industrial Ergonomics, 39(6), 947-965.
    Endsley, M. R. (1988). Situation awareness global assessment technique (SAGAT). Proceedings of the IEEE 1988 National (pp. 789-795).
    Fink, R. T., Killian, C. D., Hanes, L. F., & Naser, J. A. (2009). Guidelines for the design and implementation of computerized procedures. Nuclear News, 52(3), 85-90.
    Han, S. H., Yang, H., & Im, D. G. (2007). Designing a human–computer interface for a process control room: A case study of a steel manufacturing company. International Journal of Industrial Ergonomics, 37(5), 383-393.
    Henderson, J. M., & Hollingworth, A. (1999). High-level scene perception. Annual review of psychology, 50(1), 243-271.
    Hong, J.H., Lee, M.S., Hwang, D.H., 2009. Computerized procedure system for the APR 1400 Simulator. Nuclear Engineering and Design, 239, 3092-3104.
    Hsieh, M. C., & Hwang, S. L. (2013). The effect of information quantity on cbp interface in the advanced nuclear power plant. In Human-Computer Interaction. Users and Contexts of Use (pp. 166-173). Springer Berlin Heidelberg.
    Hsieh, M. C., Chiu, M. C., & Hwang, S. L. (2014). An interface redesign for the feed-water system of the advanced boiling water reactor in a nuclear power plant in Taiwan. Journal of Nuclear Science and Technology, 51(5), 720-729.
    Hwang, S. L., Liang, S. F. M., Liu, T. Y. Y., Yang, Y. J., Chen, P. Y., & Chuang, C. F. (2009). Evaluation of human factors in interface design in main control rooms. Nuclear Engineering and Design, 239(12), 3069-3075.
    Institute of Electrical and Electronics Engineers. (2011). Human factor guide for applications of computerized operating procedure systems at nuclear power generating stations and other nuclear facilities (Guideline 1786, 9/22/11 version). Institute of Electrical and Electronics Engineers, New York, NY.
    Jamieson, G. A. (2007). Ecological interface design for petrochemical process control: An empirical assessment. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 37(6), 906-920.
    Jamieson, G. A., Miller, C. A., Ho, W. H., & Vicente, K. J. (2007). Integrating task-and work domain-based work analyses in ecological interface design: A process control case study. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 37(6), 887-905.
    Jou, Y. T., Yenn, T. C., Lin, C. J., Yang, C. W., & Chiang, C. C. (2009). Evaluation of operators’ mental workload of human–system interface automation in the advanced nuclear power plants. Nuclear Engineering and Design, 239(11), 2537-2542.
    Jung, Y., Seong, P., & Kim, M. (2004). A model for computerized procedures based on flowcharts and success logic trees. Reliability Engineering & System Safety, 83(3), 351-362.
    Kaber, D. B., Onal, E., & Endsley, M. R. (2000). Design of automation for telerobots and the effect on performance, operator situation awareness, and subjective workload. Human Factors and Ergonomics in Manufacturing, 10(4), 409-430.
    Kitamura, M., Fujita, Y., & Yoshikawa, H. (2005). Review of international standards related to the design for control rooms on nuclear power plants. Journal of Nuclear Science and Technology, 42(4), 406-417.
    Kirwan, B. (2011). Incident reduction and risk migration. Safety science, 49(1), 11-20.
    Kim, S. K., Suh, S. M., Jang, G. S., Hong, S. K., & Park, J. C. (2012). Empirical research on an ecological interface design for improving situation awareness of operators in an advanced control room. Nuclear Engineering and Design, 253, 226-237.
    Lau, N., Jamieson, G. A., Skraaning, G., & Burns, C. M. (2008a). Ecological Interface Design in the nuclear domain: An empirical evaluation of ecological displays for the secondary subsystems of a boiling water reactor plant simulator. IEEE Transactions on Nuclear Science, 55(6), 3597-3610.
    Lau, N., Veland, O., Kwok, J., Jamieson, G. A., Burns, C. M., Braseth, A. O., & Welch, R. (2008b). Ecological Interface Design in the nuclear domain: An application to the secondary subsystems of a boiling water reactor plant simulator. IEEE Transactions on Nuclear Science, 55(6), 3579-3596.
    Lin, C. H., Hwang, S. L., Wang, E. M. Y., & Peng, S. L. (2009). Design for usability on supply chain management systems implementation. Human Factors and Ergonomics in Manufacturing & Service Industries, 19(5), 378-403.
    Loftus, G. R., & Mackworth, N. H. (1978). Cognitive determinants of fixation location during picture viewing. Journal of Experimental Psychology: Human perception and performance, 4(4), 565.
    Niwa, Y., Hollnagel, E., & Green, M. (1996). Guidelines for computerized presentation of emergency operating procedures. Nuclear Engineering and Design, 167(2), 113-127.
    O’Hara, J., Brown, W. S., Lewis, P. M., Persensky, J. J. (2002). Human-system interface design review guidelines. NUREG -0700 Rev. 2, Washington, DC. U.S. Nuclear Regulatory Commission Press.
    O’Hara, J., Higgins, J., Stubler, W., Kramer, J. (2000). Computer-based procedure systems: technical basis and human factors review guidance. NUREG/CR-6634. Washington, DC. U.S. Nuclear Regulatory Commission Press.
    O’Hara, J., Pirus, D., Nilsen, S., Biso, R., Hulsund, J.E., Zhang, W. (2003). Computerization of procedures, lessons learned, and future perspectives. HPR-355, OECD Halden Reactor Project.
    O’Hara, J., Higgins, J., Kramer, J. (2000). Advanced information systems: Technical basis and human factors review guidance. NUREG/CR-6633. Washington DC. U.S. Nuclear Regulatory Commission Press.
    O’Hara, J.M., Higgins, J.C., Persensky, J.J., Lewis, P.M., 2004. Bongarra JP. Human factors engineering program review model. NUREG-0711 Rev. 2. Washington DC. U.S. Nuclear Regulatory Commission.
    Pawlak, W. S., & Vicente, K. J. (1996). Inducing effective operator control through ecological interface design. International Journal of Human-Computer Studies, 44(5), 653-688.
    Ponsa, P., Vilanova, R., & Amante, B. (2011). Human intervention and interface design in automation systems. International Journal of Computers, Communications & Control, 6(1), 166-174.
    Rogers, M. L., Sockolow, P. S., Bowles, K. H., Hand, K. E., & George, J. (2013). Use of a human factors approach to uncover informatics needs of nurses in documentation of care. International journal of medical informatics, 82(11), 1068-1074.
    Roth, E., O’Hara, J. (2002). Integrating digital and conventional human system interface technology: lessons learned from a control room modernization program. NUREG/CR-6749. Washington, DC. U.S. Nuclear Regulatory Commission Press.
    Salvendy, G. (2012). Handbook of human factors and Ergonomics. 4th edition. New Jersey: Wiley.
    Shannon, C. E. (2001). A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review, 5(1), 3-55.
    Shneiderman, B., & Plaisant, C. (2004). Designing the user interface: strategies for effective human-computer interaction. NJ: Prentice-Hall Inc Press.
    St-Cyr, O., Jamieson, G. A., & Vicente, K. J. (2013). Ecological interface design and sensor noise. International Journal of Human-Computer Studies, 71(11), 1056-1068.
    Su, K. W., Chen, C. J., & Shue, L. Y. (2013). Implication of Cognitive Style in Designing Computer‐Based Procedure Interface. Human Factors and Ergonomics in Manufacturing & Service Industries, 23(3), 230-242.
    Taylor, R. M. (1990). Situational Awareness Rating Technique(SART): The development of a tool for aircrew systems design. Situational Awareness in Aerospace Operations (AGARD-CP-478) (pp. 3/1- 3/17).
    Ujita, H. (1985). Human error classification and analysis in nuclear power plants. Journal of Nuclear Science and Technology, 22(6), 496-498.
    Upton, C., & Doherty, G. (2008). Extending Ecological Interface Design principles: A manufacturing case study. International Journal of Human-Computer Studies, 66(4), 271-286.
    Vicente, K. J., & Rasmussen, J. (1992). Ecological interface design: Theoretical foundations. IEEE Transactions on Systems, Man and Cybernetics, 22(4), 589-606.
    Vicente, K. J. (2002). Ecological interface design: Progress and challenges. Human Factors: The Journal of the Human Factors and Ergonomics Society, 44(1), 62-78.
    Welch, R., Braseth, A.O., Nihlwing, C., Skraaning, A. Jr., Teigen, A., Veland, O., Lau, N., Jamieson, G.A., Burns, C.M., Kwok, J. (2007). The 2005 Ecological Interface Design Process and The Resulting Displays. Norway: OECD Halden Reactor Project.
    Wickens, C.D. (1984). Processing resource in attention. In R. Parasuraman & R. Davies (Eds). New York: Academic Press.
    Wickens, C. D., Hollands, J. G. (2002). Engineering psychology and human performance. Prentice Education Taiwan Ltd Press.
    Xu, S., Song, F., Li, Z., Zhao, Q., Luo, W., He, X., & Salvendy, G. (2008). An ergonomics study of computerized emergency operating procedures: presentation style, task complexity, and training level. Reliability Engineering & System Safety, 93(10), 1500-1511.
    Yang, C. W., Yang, L. C., Cheng, T. C., Jou, Y. T., & Chiou, S. W. (2012). Assessing mental workload and situation awareness in the evaluation of computerized procedures in the main control room. Nuclear Engineering and Design, 250, 713-719.
    Yerkes, R. M., Dodson, J. M. (1908). The relation of strength of stimulus to rapidity of habit formation. Journal of Comparative Neurology and Psychology, 18(5), 459-482.
    Young, M. S., & Birrell, S. A. (2012). Ecological IVIS design: Using EID to develop a novel in-vehicle information system. Theoretical Issues in Ergonomics Science, 13(2), 225-239.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE