簡易檢索 / 詳目顯示

研究生: 徐茂峰
Hsu, Mao-Feng
論文名稱: 以小分子材料旋塗製備高效率有機發光二極體
High-efficiency Molecule-based Organic Light-emitting Diodes Via Solution Process
指導教授: 周卓煇
Jou, Jwo-Huei
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 98
語文別: 中文
論文頁數: 95
中文關鍵詞: 有機發光二極體高效率濕式製備
外文關鍵詞: Organic Light Emitting Diodes, High Efficiency, Solution Process
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以小分子磷光材料,利用旋塗製程,製作一系列具單一發光層之有機電致發光二極體(Organic Light Emitting Diode, OLED),所製備之元件可分為兩部分探討。
    第一部分:將一新穎奈米點摻混入電洞傳輸層,以大幅增加白光磷光OLED元件之效率;其中,奈米點為聚矽酸(polysilicic acid;PSA),電洞傳輸層為poly(3,4-ethylene-dioxy- thiophene)-poly- (styrenesulfonate);而奈米點摻混的濃度與粒徑大小,對於元件效率有深遠的影響,當奈米點粒徑為8 nm,摻混濃度為14 wt %時,所得純白光元件,亮度在100 cd/m2時,發光效率從6.8 lm/W提升至23.7 lm/W,增加350%;元件效率之提昇,可歸因於奈米點可有效調整電洞進入發光層之數量,造成載子注入平衡。
    第二部分:合成出新穎綠色磷光銥金屬錯合物bis[5-methyl-7-trifluoromethyl-5H-benzo(c)(1,5)naphthyridin-6-one]iridium(picolinate)(CF3BNO),此錯合物具備短激態生命期(excited-state lifetime, 0.30 μs)及高量子產率(quantum yield, 95%);以此CF3BNO染料搭配主體材料4,4’-bis(9-carbazolyl)biphenyl,以製備綠光OLED元件時,其能量效率,在100 cd/m2下,達89.1cd/A (69.8 lm/W),Commission internationale de l'éclairage 1931色座標為(0.22, 0.51);除了此磷光材料擁有優異磷光特性外,此元件之高效率,也可歸因於適當的元件製程與結構能階設計,讓電子傾向直接注入到主體材料上,使電子電洞在主體上進行再結合,形成激子;再藉由能量傳遞的方式,傳導到客體CF3BNO;因此,避免過多激子在客體形成,而造成淬熄現象。


    摘要.………….……………………………………………………..I 獻…..………………………………………………………………III 誌謝..……………………………………………………………………IV 目錄…..…………………………………………………………………VI 表目錄.……………….…………………………….……………………X 圖目錄.……….……………………………………………………....XI 壹、 緒論..…………………………………………………..…1 貳、 文獻回顧..……………………………………………….3 2-1、有機發光二極體的歷史發展…………………....…….…...3 2-2、發光原理……………………………………………………...9 2-3、有機發光材料……………..………………………………….16 2-4、高效率有機發光二極體元件之發展.......................21 2-4-1、奈米點/量子點製備高效率OLEDs/PLEDs元件……...21 2-4-2、客體發光材料開發………………………………….......25 2-4-3、電洞/電子傳輸材料開發………………………….......27 2-4-4、元件結構設計……………………………………….......28 2-5、有機電致發光元件之壽命機制……….……………………..30 參、 實驗方法..………………………………………………33 3-1、材料……..…..…………………………………….………….33 3-2、奈米點與新穎磷光綠光材料之合成……..…..…………….36 3-2-1、奈米點之合成機制……..……..……………………….36 3-2-2、CF3BNO之合成…………..……..…………………….37 3-2-3、BNO之合成……………..……..……………………….38 3-3、材料性質量測.…..…………………………………………...39 3-3-1、奈米點粒徑與表面電位量測………………………….39 3-3-2、新穎磷光綠光材料物性量測………………………….41 3-4、元件設計及製備…………………………………………….46 3-4-1、元件之製作流程及電路設計………………………….46 3-4-2、基材清洗……………...………………………..……….48 3-4-3、主體與發光染料溶液之配製……………...…..……….48 3-4-4、旋轉塗佈…………………………………...…..……….49 3-4-5、蒸鍍裝置…………………………………...…..……….50 3-4-6、負電極的製備……………………………...…..……….51 3-4-7、蒸鍍速率之測定與校正………………………..……….51 3-5、元件電流、電壓與亮度特性量測.….……………………....52 3-6、發光效率之計算..……………………………………………54 3-7、元件壽命之量測…….....………….……………………....54 肆、 結果與討論…………………………………..…………55 4-1、奈米點強化白光OLED元件…….….…..…..….….….……55 4-1-1、元件結構及鍍膜參數…………………………..……….55 4-1-2、奈米點之粒徑分析…...…………………………………56 4-1-3、奈米點強化元件發光特性…...…………………………57 4-1-4、奈米點摻混電洞傳輸層對電洞注入機制探討…….…..60 4-1-5、奈米點粒徑對元件效率之影響….….…………………63 4-1-6、奈米點對白光元件覆合區之影響…….……….……….63 4-1-7、奈米點對白光元件壽命之影響…….…….…………….66 4-2、高效率磷光綠光有機發光二極體…………………………...67 4-2-1、新穎綠磷光材料之物理性質………………………….67 4-2-2、元件結構及鍍膜參數……………..…………………….69 4-2-3、綠磷光染料以旋塗製程對元件光電特性之影響……...70 4-2-4、材料特性對元件效率之影響………..………………….72 4-2-5、能階結構對效率之影響………..……………………….73 4-2-6、製程對元件效率之影響……………..………………….74 4-2-7、綠磷光染料以旋塗製程對元件壽命之影響………….79 伍、結論………………………………………………….…………..80 陸、參考資料………………………………………………………….82 柒、附件………………………………………………………….90

    [1] R. Duggal, J. J. Shiang, C. M. Heller, D. F. Foust, Appl. Phys. Lett. 2002, 80, 3470.
    [2] W. D’ Andrade, S. R. Forrest, Adv. Mater. 2004, 16, 1585.
    [3] J. Kido, M. Kimura, K. Nagai, Science, 1995, 267, 1332.
    [4] Z. Shen, P. E. Burrows, V. Bulović, S. R. Forrest, M. E. Thompson, Science, 1997, 276, 2009.
    [5] J. H. Jou, P. H. Chiang, Y. P. Lin, C. Y. Chang, C. L. Lai, Appl. Phys. Lett. 2007, 91, 043504.
    [6] M. Pope, C. E. Swenberg, Electronic Process in Organic Crystals and Polymers, Second Edition, Oxford University Press, New York, 1999.
    [7] J. H. Jou, C. P. Wang, M. H. Wu, P. H. Chiang, H. W. Lin, H. C. Li, R. S. Liu, Org. Electron. 2007, 8, 29.
    [8] R. C. Kwong, S. Lamansky, M. E. Thompson, Adv. Mater. 2000, 12, 1134.
    [9] M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, Y. Taga, Appl. Phys. Lett. 2001, 79, 156.
    [10] Z. Y. Xie, L. S. Hung, S. T. Lee, Appl. Phys. Lett. 2001, 79, 1048.
    [11] F. Nüesch, D. Berner, E. Tutiš, M. Schaer, C. Ma, X. Wang, B. Zhang, L. Zuppiroli, Adv. Funct. Mater. 2005, 15, 323.
    [12] J. H. Jou, C. C. Chen, Y. C. Chung, M. F. Hsu, C. H. Wu, S. M. Shen, M. H. Wu, W. B. Wang, Y. C. Tsai, C. P. Wang, J. J. Shyue, Adv. Funct. Mater. 2008, 18, 121.
    [13] J. H. Jou, M. F. Hsu, W. B. Wang, C. P. Liu, Z. C. Wong, J. J. Shyue, C. C. Chiang, Org. Electron. 2008, 9, 291.
    [14] J. H. Jou, C. J. Wang, Y. P. Lin, Y. C. Chung, P. H. Chiang, M. H. Wu, C. P. Wang, C. L. Lai, C. Chang, Appl. Phys. Lett. 2008, 92, 223504.
    [15] S. A. Carter, J. C. Scott, P. J. Brock, Appl. Phys. Lett. 1997, 71, 1145.
    [16] C. O. Poon, F. L. Wong, S. W. Tong, R. Q. Zhang, C. S. Lee S. T. Lee, Appl. Phys. Lett. 2003, 83, 1038.
    [17] J. H. Jou, M. C. Sun, H. H. Chou, C. H. Li, Appl. Phys. Lett. 2005, 87, 043508.
    [18] Bernanose, M. Conet, P. Vouauzx, J. Chem. Phys. 1953, 50, 64.
    [19] P. Pope, H. P. Kallmann, P. J. Magnante, Chem. Phys. 1963, 38, 2042.
    [20] W. Helfrich, W. G. Schneider, Phys. Rev. Lett. 1965, 14, 229.
    [21] W. Helfrich, W. G. Schneider, J. Chem. Phys. 1966, 44, 2902.
    [22] P. S. Vincett, W. A. Barlow, R. A. Hann, G. G. Robert, Solid Thin Films 1982, 94, 171.
    [23] R. H. Patridge, Polymer 1983, 24, 733.
    [24] C. W. Tang, and S. A. VanSlyke, Appl. Phys. Lette. 1987, 51, 913.
    [25] S. A. VanSlyke, C. W. Tang, and L. C. Robert, US. Pat. 1988, 4,720,432.
    [26] W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys. 1989, 65, 3610.
    [27] J. H. Burroughs, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes, Nature 1990, 347, 539.
    [28] R. H. Friend, J. H. Burroughes, and D. D. Bradley, US. Pat. 1993, 5,247,190.
    [29] C. Adachi, S. Tokito, T. Tsutsui, S. Saito, Jpn. J. Appl. Phys. 1988, 27, 713.
    [30] M. Era, C. Adachi, T. Tsutsui, S. Saito, Chem. Phys. Lett. 1991, 178, 488.
    [31] J. Kido, M. Kohda, K. Okuyama, K. Nagai, Appl. Phys. Lett. 1992, 61, 761.
    [32] J. Kido, K. Hongawa, K. Okuyama, K. Nagai, Appl. Phys. Lett. 1994, 64, 815.
    [33] J. Kido, M. Kimura, K. Nagai, Science, 1995, 267, 1332.
    [34] G. E. Jabbour, B. Kippelen, N. R. Armstrong, and N. Peyghambarian, Appl. Phy. Lett., 1998, 73, 1185.
    [35] M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett., 1999, 75, 4.
    [36] M. Pope and C. E. Swenberg, Electronic Process in Organic Crystals and Polymers, Second Edition, Oxford University Press, New York, 1999.
    [37] Dodabalapur, Bell Lab., Solid State Com., 1997, 102, 259.
    [38] S. Miyata, H. S. Nalwa, Organic Electroluminescent Materials and Devices, Gordon and Breach Science Publishers, 1997, Chap 1.
    [39] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature, 1998, 395, 151.
    [40] T. Förster, Ann. Phys., 1948, 6, 55.
    [41] L. Dexter, J. Chem. Phys., 1953, 21, 836.
    [42] S. Miyata and H. S. Nalwa, Organic Electroluminescent Materials and Devices, Gordon and Breach Science Publishers, 1997, Chap 8.
    [43] S. Miyata and H. S. Nalwa, Organic Electroluminescent Materials and Devices, Gordon and Breach Science Publishers, 1997, Chap 9.
    [44] J. Yang and J. Shen, J. Appl. Phys., 1998, 84, 2105.
    [45] Z. Liu and J. Pinto, J. Soaves, E. Pereira, Synth. Metals, 2001, 122, 177.
    [46] Commission Internationale de L’eclairage (CIE), Colorimetry, Publication Report No. 15.2, 1986.
    [47] M. A. Baldo, D. F. Brlen, and S. R. Forrest, US. Pat. 2000, 6,097,147.
    [48] L. S. Hung, and C. W. Tang, US. Pat. 1997, 5,677,572.
    [49] D. Heithecker, A. Kammoun, T. Dobbertin, T. Riedl, E. Becker, D. Metzdorf, D. Schneider, H.-H. Johannes, W. Kowalsky, Appl. Phys. Lett. 2003, 82, 4178.
    [50] S. A. VanSlyke, C. H. Chen, C. W. Tang, Appl. Phys. Lett. 1996, 69, 2160.
    [51] K. A. Higginson, X. Zhang, F. Padaimitrakoppulos, Chem. Mater. 1998, 10, 1017.
    [52] S. A. VanSlyke, C. H. Chen, C. W. Tang, US. Pat. 1991, 5,061,569.
    [53] H. Sasabe, E. Gonmori, T. Chiba, Y. J. Li, D. Tanaka, S. J. Su, T. Takeda, Y. J. Pu, K. I. Nakayama, J. Kido, Chem. Mater. 2008, 20, 5951.
    [54] T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, W. J. Feast, Appl. Phys. Lett. 1999, 75, 1679.
    [55] A. Babel, S. A. Jenekhe, J. Am. Chem. Soc. 2003, 125, 13656.
    [56] S. A. Carter, J. C. Scott, and P. J. Brock, Appl. Phys Lett., 1997, 71, 1145.
    [57] V. Bliznyuk, B. Ruhstaller, P. J. Brock, U. Scherf, S. A. Carter, Adv. Mater. 1999, 15, 11.
    [58] Z. F. Zhang, Z. B. Deng, C. J. Liang, M. X Zhang, D.H. Xu, Displays., 2004, 24, 231.
    [59] Y. Li, A. Rizzo, M. Mazzeo, L. Carbone, L. Manna, R. Cingolani, G. Gigli, J. Appl. Phys, 2005, 97, 113501.
    [60] J. W. Park, Md. H. Ullah, S. S. Park, C. S. Ha, J. Mater Sci:Mater Electron, 2007, 18, S393.
    [61] C. J. Chang, C.H. Yang, K. Chen, Y. Chi, C. F. Shu, N. L. Ho, Y. S. Yeh, P. T. Chou, Dalton Trans. 2007, 1881.
    [62] W. S. Huang, J. T. Lin, C. H. Chien, Y. T. Tao, S. S. Sun, Y. S. Wen, Chem. Mater. 2004, 16, 2480.
    [63] S. C. Lo, N. A. H. Male, J. P. J. Markham, S. W. Magennis, P. L. Burn, O. V. Salata, I. D. W. Samuel, Adv. Mater. 2002, 14, 975.
    [64] X. Yang, D. C. Müller, D. Neher, K. Meerholz, Adv. Mater. 2006, 18, 948.
    [65] N. Rehmann, D. Hertel, K. Meerholz, H. Becker, S. Heun, Appl. Phys. Lett. 2007, 91, 103507.
    [66] D. Tanaka, H. Sasabe, Y. J. Li, S. S. Su, T. Takeda, J. Kido, Jpn. J. Appl. Phys. 2007, 46, 1, L10.
    [67] J. H. Jou, Y. S. Chiu, C. P. Wang, R. Y. Wang, H. C. Hu, Appl. Phys. Lett. 2006, 88, 193501.
    [68] M. Fujihira, L. Do, A. Koike, and E. Han, Appl. Phys. Lett., 1994, 68, 1787. 66
    [69] T. Mori, S. Miyake, and T. Mizutani, Jpn. J. Appl. Phys., 1995, 34, 845.
    [70] M. Fujihira, L. Do, A. Koike, and E. Han, Appl. Phys. Lett., 1996, 68, 1787.
    [71] R. Schlatmann, D. Wilms Floet, A. Hilberer, F. Garten, P. J. M. Smulders, J. M. Klapwijk, and G. Hadziioannou, Appl. Phys. Lett., 1996, 69, 1764.
    [72] E. Strukeji, S. E. Shaheen, S. Thayumanavan, S. Barlow, R. H. Grubbs, S. R. Marder, B. Kippelen, and N. Peyghambarian, Chem. Mater., 1998, 10, 1668.
    [73] P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, Appl. Phys Lett., 1994, 65, 2922.
    [74] H. Aziz, and Z. D. Popovic, Chem. Mater. 2004, 16, 4522
    [75] Y. C. Tsai, J. H. Jou, Appl. Phys. Lett.,2006, 89, 243521.
    [76] J. McElvain, H. Antoniadis, M. R. Hueschen, J. N. Miller, D. M. Roitman, J. R. Sheets, and R. L. Moon, J. Appl. Phys., 1996, 80, 6002.
    [77] Kawaharada, M.; Ooishi, M.; Saito, T.; Hasegawa, E., Synth. Met. 1997, 91 113.
    [78] L. Do, E. Han, N. Yamamoto, and M. Fujihira, Mol. Cryst. Liq. Cryst., 1996, 280, 373.
    [79] Y. Liew, H. Aziz, N. Hu, H. Chan, G. Xu, Z. Popovic Appl.Phys. Lett. 2000, 77, 2650.
    [80] H. Aziz, Z. Popovic, C. P. Tripp, N. Hu, A. Hor, G. Xu, Appl.Phys. Lett. 1998, 72, 2642.
    [81] M. Schaer, F. Nuesch, D. Berner, W. Leo, L. Zuppiroli, Adv.Funct. Mater. 2001, 11, 116.
    [82] W. Wang, S. F. Lim, S. J. Chua, J. Appl. Phys. 2002, 91, 5712.
    [83] M. Probst and R. Haight, Appl. Phys. Lett., 1997, 70, 1420.
    [84] H. Aziz, Z. D. Popovic, N. X. Hu, A. M. Hor, G. Xu, Science 1999, 283, 1900.
    [85] Z. Popovic, H. Aziz, A. Ioannidis, N. Hu, P. N. M. dos Anjos, Synth. Met. 2001, 123, 179.
    [86] Z. D. Popovic, H. Aziz, N. Hu, A. Ioannidis, P. N. M. dos Anjos, J. Appl. Phys. 2001, 89, 4673.
    [87] J. Yang, J. Shen, J. Appl. Phys. 1998, 84, 2105.
    [88] H. Aziz, Z. Popovic, Appl. Phys. Lett. 2002, 80, 2180.
    [89] H. Aziz, Z. Popovic, In Proceedings of SPIE Conference on Organic Light Emitting Materials and Devices VI; Seattle, WA, July 7-11, 2002, 2003, Vol. 4800, p 80.
    [90] J. Shen, D. Wang, E. Langlois, W. A. Barrow, P. J. Green, C. W. Tang, J. Shi, Synth. Met., 2000, 111/112, 233.
    [91] H. Aziz, Z. Popovic, S. Xie, A. Hor, N. Hu, C. P. Tripp, and G. Xu, Appl. Phys. Lett., 1998, 72, 756.
    [92] P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, M. E. Thompson, Appl. Phys. Lett. 1994, 65,2922.
    [93] J. McElvain, H. Antoniadis, M. R. Hueschen, J. N. Miller, D. M. Roitman, J. R. Sheats, R. L. Moon, J. Appl. Phys. 1996, 80, 6002.
    [94] Y. Kim, D. Choi, H. Lim, C.-S. Ha, Appl. Phys. Lett. 2003, 82, 2200.
    [95] F. Papadimitrakopoulos, X. Zhang, D. L. Thomsen III, and K. A. Higginson, Chem. Mater., 1996, 8, 1363.
    [96] H. Aziz, Z. Popovic, S. Xie, A. M. Hor, N. X. Hu, C. Tripp, and G. Xu, Appl. Phys. Lett., 1998, 72, 756.
    [97] Y. Sato, and H. Kanai, Mol. Cryst. Liquid Cryst., 1994, 253,144.
    [98] Y. G. Hsu and C. P. Wang, Journal of Polymer Research, 2003, 10, 201.
    [99] S. Janietz, D. D. C. Bradley, M. Grell, C. Giebeler, M. Inbasekaran, E. P. Woo, Appl. Phys. Lett. 1998, 73, 2453.
    [100] Lin, W. C.; Wang, W. B.; Lin, Y. C.; Yu, B. Y.; Chen, Y. Y.; Hsu. M. F.; Jou. J. H.; Shyue. J. J.; Org. Electron. 2009, 10, 459.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE