研究生: |
郭紫軒 Kuo, Tzu-Hsuan |
---|---|
論文名稱: |
Direct Arylation for Synthesis of Cyclopentadithiophene-Methylbenzoate Copolymers and Their Application as Conductive Binders in Lithium Ion Batteries |
指導教授: |
堀江正樹
Masaki Horie |
口試委員: |
蘇安仲
Su, An-Chung 陳信龍 Chen, Hsin-Lung 游進陽 Yu, Chin-Yang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 80 |
中文關鍵詞: | 共軛導電高分子 、鋰離子電池 |
外文關鍵詞: | conjugated polymer, lithium ion battery |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Silicon is one of the most promising anode materials for lithium ion batteries owing to its high theoretical energy capacity. Traditionally, the anodes of batteries are composed of three components, active materials, binders, and conductive additives respectively. However, during cycles of lithiation and delithiation, the large volume expansions occur to cause disconnection between silicon and binders, further resulting in drastic capacity fade.
In this work, a series of conjugated copolymers, comprising cyclopentadithiophene (CPDT), ethylenedioxythiophene (EDOT), fluorene (F), and methylbenzoate (MB), were developed to obtain suitable polymers for silicon binders with both properties of electric and ionic conductivities and mechanical integrities. These polymers were synthesized through the facile synthetic method, Pd-catalyzed direct arylation polycondensation. Reaction conditions were optimized by changing monomer composition ratios, amount of Pd-catalyst, temperatures, reaction time, and solvents. These copolymers were obtained with high molecular weight (Mn = 21200-53000), which was determined by gel permeation chromatography (GPC) eluted with THF compared to polystyrene standards. Methyl ester group (–COOCH3) on MB in these polymers was converted to carboxylic acid (–COOH) via saponification in the presence of KOH aq. followed by treatment with HCl aq. Optical and electrochemical properties of the polymers were measured to estimated bandgap and HOMO and LUMO levels. The polymers exhibited bandgap around 2.0 eV. Impressively, a polymer containing CPDT and MB units showed a quite narrow bandgap 1.57 eV, which had good electric conductivity.
The polymers were used as conducting binders for Si-nanopowder to prepare anode electrodes in lithium ion batteries. In cycle-life tests, the polymers with the COOH functional groups showed great improvement because the COOH groups enhanced ionic conductivity with better adhesion property between the polymers and Si-nanopowder. In particular, the battery fabricated using P[CPDT-MB(COOH)] showed the highest performance with a specific capacity up to 1820 mAh/g at 0.1 C and 1250 mAh/g at 0.5 C for the entire electrode after 100 cycles, and good stability at various rates at 70 cycles. Morphology of the anode electrodes was measured by a field emission scanning electron microscope, showing that some cracks were formed after the cycle test. Ionic conductivities of the polymers were estimated by electrochemical impedance analysis. P[CPDT-MB(COOH)] showed much higher ionic conductivity of 1.58 x 10-10 S cm-1 than that of original polymer P(CPDT-MB) (3.16 x 10-23 S cm-1). These results account for the high cyclic stability of the battery of P[CPDT-MB(COOH)].
References
1. C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, A. G. MacDiarmid, Physical Review Letters. 1977, 39, 1098
2. Inzelt, György, "Chapter 1: Introduction". In Scholz, F. Conducting Polymers: A New Era in Electrochemistry, Springer, 2008.
3. Naarmann, Herbert, "Polymers, Electrically Conducting", Ullmann's Encyclopedia of Industrial Chemistry, 2000.
4. Inzelt, György, "Chapter 8: Historical Background" In Scholz, F. Conducting Polymers: A New Era in Electrochemistry, Springer, 2008.
5. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; MacKay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature. 1990, 347, 539.
6. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brédas, M. Lögdlund, W. R. Salaneck. Nature. 1999, 397, 121.
7. G. Horowitz, Adv. Mater. 1998, 10, 365.
8. Z. Bao, J. A. Rogers, H. E. J. Katz, Mater. Chem. 1999, 9, 1895.
9. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539.
10. C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Funct. Mater. 2001, 11, 15.
11. B. C. Thompson, J. M. J. Fréchet, Angew. Chem. Int. Ed. 2008, 47, 58.
12. U. Kasavajjula, C. Wang, Jurnal of Power Sources. 2007, 163, 1003
13. M. N. Obrovacz and L. Christensen, Electrochem. Solid-State Lett. 2004, 151(6), A838
14. J. Li, J. R. Dahn, J. Electrochem. Soc. 2007, 154, A156.
15. B. A. Boukamp, G. C. Lesh, R. A. Huggins, J. Electrochem. Soc. 1981, 128, 725.
16. J. H. Ryu, J. W. Kim, Y. E. Sung, S. M. Oh, Electrochem. Solid-State Lett. 2004, 7, A306.
17. M. N. Obrovac, L. J. Krause, J. Electrochem. Soc. 2007, 154, A103.
18. J. Christensen, J. Newman, J. Solid State Electrochem. 2006, 10, 293.
19. S. Renganathan, G. Sikha, S. Santhanagopalan, R. E. White, J. Electrochem. Soc. 2010, 157, A155
20. C. K. Chan , H. L. Peng , G. Liu , K. McIlwrath , X. F. Zhang , R. A. Huggins , Y. Cui , Nat. Nano. 2008, 3, 31.
21. A. Magasinski , P. Dixon , B. Hertzberg , A. Kvit , J. Ayala , G. Yushin , Nat. Mater. 2010, 9, 353.
22. W. R. Liu, M. H. Yang, H. C. Wu, S. M. Chiao, N. L. Wu, Electrochem. Solid-State Lett. 2005, 8, A100.
23. N. S. Hochgatterer, M. R. Schweiger, S. Koller, P. R. Raimann, T. Wohrle, C. Wurm, M. Winter, Electrochem. Solid-State Lett. 2008, 11, A76.
24. J. Li, D.-B. Le, P. P. Ferguson, J. R. Dahn, Electrochim. Acta 2010, 55, 2991.
25. B.J. Landi, M.J. Ganter, C.D. Cress, R.A. DiLeo, R.P. Raffaelle, Energy & Environmental Science, 2 (2009) 638.
26. L. F. Cui, R. Ruffo, C. K. Chan, H. L. Peng, Y. Cui, Nano Lett. 2009, 9, 491.
27. R. Teki, M. K. Datta, R. Krishnan, T. C. Parker, T. M. Lu, P. N. Kumta, N. Koratka, Small 2009, 5, 2236.
28. B. Kang, G. Ceder, Nature 2009, 458, 190.
29. S. D. Beattie, D. M. Manolescu, S. L. Blair, J. Electrochem. Soc. 2009, 156, A44.
30. J. Graetz, C. C. Ahn, R. Yazami, B. Fultz, Electrochem. Solid-State Lett. 2003, 6, A194.
31. H. Kim, M. Seo, M. H. Park, J. Cho, Angew. Chem. Int. Ed. 2010, 49, 2146
32. G. Liu, H. Zheng, S. Kim, Y. Deng, A. M. Minor, X. Song, V. S. Battaglia, J. Electrochem. Soc. 2008, 155, A887.
33. G. Liu, H. Zheng, A. S. Simens, A. M. Minor, X. Song, V. S. Battaglia, J. Electrochem. Soc. 2007, 154, A1129.
34. S. D. Beattie, D. Larcher, M. Morcrette, B. Simon, J. M. Tarascon, J. Electrochem. Soc. 2008, 155, A158
35. G. Liu, S. Xun, X. Song, H. Zheng, V. S. Battaglia, L. Wang, W. Yang, Adv. Mater. 2011, 23, 4679.
36. T. R. Jow, L. W. Shacklette, J. Electrochem. Soc. 1988, 135, 541
37. Z. J Han, N. Yabuuchi, K. Shimomura, M. Murase, H. Yui, S. Komaba, Energy Environ. Sci. 2012, 5, 9014.
38. J. C. Guo, C. S. Wang, Chem. Commun. 2010, 46, 1428
39. C. Wang, H. Wu, Y. Cui, Z. Bao, Nature Chemistry 2013, 5, 1042
40. Y. C. Yen, S. C. Chao, H. C. Wu, N. L. Wu, J. Electrochem. Soc. 2009, 156, A95.
41. L. B. Chen, K. Wang, X. H. Xie, J. Y. Xie, J. Power Sources 2007, 174, 538.
42. V. Etacheri, O. Haik, Y. Goffer, G. A. Roberts, I. C. Stefan, R. Fasching, D. Aurbach, Langmuir 2012, 28, 965.
43. S. Dalavi, P. Guduru, B. L. Lucht, J. Electrochem. Soc. 2012, 159, A642.
44. N. Miyaura, Cross-Coupling Reactions: A Practical Guide, Springer, New York, 2002.
45. J. K. Stille, Angew. Chem. 1986, 98, 504; Angew. Chem. nt. Ed. Engl. 1986, 25, 508.
46. T. N. Mitchell, Synthesis 1992, 803.
47. D. Azarian, S. S. Dua, C. Eaborn, D. R. M. Walton, J. Organomet. Chem. 1976, 117, C55.
48. D. Milstein, J. K. Stille, J. Am. Chem. Soc. 1978, 100, 3636.
49. V. Farina, V. Krishnamurthy, W. K. Scott, Organic Reactions, Vol. 50, Wiley, New York, 1997.
50. Z. Bao, W. K. Chan, L. Yu, J. Am. Chem. Soc. 1995, 117, 12426.
51. P. Espinet, A. M. Echavarren, Angew. Chem. Int. Ed. 2004, 43, 4704.
52. a) K. C. Nicolaou, E. J. Sorensen, Classics in Total Synthesis, VCH, Weinheim, 1996; b) K. C. Nicolaou, S. A. Snyder, Classics in Total Synthesis II, Wiley-VCH, Weinheim, 2003.
53. M. A. J. Duncton, G. Pattenden, J. Chem. Soc. Perkin Trans. 1 1999, 1235.
54. J. A. Ragan, J. W. Raggon, P. D. Hill, B. P. Jones, R. E. McDermott, M. J. Munchhof, M. A. Marx, J. M. Casavant, B. A. Cooper, J. L. Doty, Y. Lu, Org. Process Res. Dev. 2003, 7, 676
55. N. Miyaura, A. Suzuki, J. Chem. Soc. Chem. Commun. 1979, 866.
56. T. Ishiyama, N. Matsuda, N. Miyaura, A. Suzuki, J. Am. Chem. Soc. 1993, 115, 11018.
57. T. Ishiyama, M. Murata, N. Miyaura, J. Org. Chem. 1995, 60, 7508.
58. M. Murata, S. Watanabe, Y. Masuda, J. Org. Chem. 1997, 62, 6458.
59. N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457.
60. V. Farina, V. Krishnamurthy, W. J. Scott, Organic Reactions, Wiley, New York, 1997.
61. A. Suzuki, J. Organomet. Chem. 1999, 576, 147.
62. R. Martin, S. L. Buchwald, Acc. Chem. Res. 2008, 41, 1461.
63. L. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem. 2009, 121, 9976; Angew. Chem. Int. Ed. 2009, 48, 9792.
64. A. Facchetti, L. Vaccaro, A. Marrocchi, Angew. Chem. Int. Ed. 2012, 51, 3520.
65. M. Sévignon, J. Papillon, E. Schulz, M. Lemaire, Tetrahedron Lett. 1999, 40, 5873.
66. M. Lafrance, K. Fagnou, J. Am. Chem. Soc. 2006, 128, 16496.
67. Q. Wang, R. Takita, Y. Kikuzaki, F. Ozawa, J. Am. Chem. Soc. 2010, 132, 11420.
68. S. Kowalski, S. Allard, U. Scherf, ACS Macro Lett. 2012, 1, 465.
69. W. Lu, J. Kuwabara, T. Iijima, H. Higashimura, H. Hayashi,T. Kanbara, Macromolecules 2012, 45, 4128.
70. A. Najari, P. Berrouard, C. Ottone, M. Boivin, Y. Zou,D. Gendron, W. O. Caron, P. Legros, C. N. Allen, S. Sadki, M. Leclerc, Macromolecules 2012, 45, 1833.
71. P. Coppo, M. L. Turner, J. Mater. Chem. 2005, 15, 1123.