研究生: |
曾建富 Tseng, Chien-Fu |
---|---|
論文名稱: |
錫銀銅銲料與無電鍍鎳(磷)/鈀/金底層金屬之微觀結構、可靠度測試及結構方向性 Microstructure Evolution, Reliability Test and Grain Orientation of SnAgCu Solder Joint with Electroless Ni(P)/Pd/Au Under Bump Metallurgy |
指導教授: |
杜正恭
Duh, Jenq-Gong |
口試委員: |
杜正恭
Duh, Jenq-Gong 劉國全 Liu, Kuo-Chuan 李志偉 Lee, Jyh-Wei 石東益 Shih, Toung-Yi 林詠淇 Lin, Yung-Chi |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 180 |
中文關鍵詞: | 無鉛銲料 、電子封裝 、鎳鈀金表面處理 、介金屬化合物 、微結構觀察 、可靠度測試 、結構方向性 、背向電子繞射儀 |
外文關鍵詞: | Pb-free solder, Electronic packaging, ENEPIG surface finish, Intermetallic compound, Microstructure Evolution, Reliability Test, Grain Orientation, EBSD |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,無電鍍鎳鈀浸金(ENEPIG)已被廣泛應於用電子封裝中的金屬銲墊之表面處理。ENEPIG的盛行可歸因於其眾多優勢,其中,最重要的莫過於ENEPIG可抑制在無電鍍鎳浸金(ENIG)發生的”黑墊”(Black pad)問題。添加一層鈀於無電鍍鎳層與置換金層中,可有效抑制無電鍍鎳層於置換金溶液中發生的過度腐蝕現象。然而,鮮少有研究對於此兩類表面處理的界面反應比較及微結構差異進行詳細探究。因此,本研究將針對ENIG和ENEPIG這兩種表面處理進行研究,指出鈀元素造成的微結構差異與機械性質影響,並提出合理之生成機制。
與錫銀銅銲料接合並熱處理後,ENEPIG接點中的介金屬化合物(IMC) (Cu,Ni,Pd)6Sn5的生長明顯地被抑制。此外,Cu6Sn5轉變為Ni3Sn4的相轉變亦被抑制,此一相轉變的抑制可進一步減緩Ni3P層中孔洞的生成。為了進一步探究(Cu,Ni,Pd)6Sn5的生長動力學,ENIG與ENEPIG接點皆在銲料液態下進行反應,發現鈀在液態反應初期可扮演異質成核點,進而降低(Cu,Ni,Pd)6Sn5生長的活化能。較低的活化能可進一步確保接點界面無相轉變的發生。另外,將針對鈀元素對於介金屬化合物的生長影響進行探討,以及其對於Ni3Sn4相抑制之機制。
為了進一步驗證微結構差異是否直接到影響界面強度,本研究藉由高速衝擊試驗來評估銲錫接點的強度。從結果可知,ENEPIG接點強度隨著迴焊次數增加而下降的程度遠比ENIG接點少,此優異的機械性質表現與破裂面的改變可歸因於針狀形貌的(Cu,Ni,Pd)6Sn5,並提供了interlocking的效果。針對機械性質的結果,將結合前面所提出的鈀元素對微結構的影響,提出詳細的機制探討
另外,銲錫接點的晶粒大小與方向性是目前相當重要的可靠度議題。因此,本研究利用背向電子繞射儀(EBSD)觀察ENIG/SnAgCu/Cu和ENEPIG/SnAgCu/Cu雙邊接合試片中的界面IMC。在本研究中可發現,IMC在銅端及鎳端的生長方式及優選方向有所不同,此一差異可能肇因於雙邊接合試片中兩端不同元素的交互擴散影響所至。最後,將針對雙邊接合試片中影響介金屬化合物生長方向的原因進行探討,並與所觀察到之微結構差異相關連,提出可行之反應機制。
Electroless Ni(P)/electroless Pd/immersion Au (ENEPIG) is widely used as surface finish for metal bond pad in the electronic packaging industries. The widespread adoption of ENEPIG is attributed to its many advantages, and the most important one, it resolves the so-called “black pad” reliability problem in the electroless Ni(P)/immersion Au (ENIG) surface finish. The insertion of Pd layer is believed to relieve the corrosion of underneath Ni(P) layer from immersion Au plating solution. However, the complete interfacial reaction and comparison between these two surface finishes are still lacking in literature. Therefore, this study aims to probe the microstructure variation induced by the Pd addition and to discuss the possible mechanism.
The interfacial reactions of Sn-3.0Ag-0.5Cu solder jointed with ENIG and ENEPIG were first to investigated. (Cu,Ni,Pd)6Sn5 grew rather slower in the ENEPIG samples among all aging condition as compared with ENIG. It was demonstrated that ENEPIG could inhibit the formation of Ni3Sn4, which then decreased the growth of columnar Kirkendall voids inside the Ni3P layer. In order to further explore the growth kinetics of (Cu,Ni,Pd)6Sn5, the liquid state reaction was thus investigated. Pd may act as heterogeneous nucleation sites in the initial soldering and lower the activation energy of (Cu,Ni,Pd)6Sn5, as compared to (Cu,Ni)6Sn5. The lower activation energy of (Cu,Ni,Pd)6Sn5 growth ensured that no phase transformation occurred in the SAC305/ENEPIG joints, which may explain why the phase transformation was inhibited in the ENEPIG joints. The detailed impacts of Pd on the growth kinetics of IMC formation was investigated and discussed as well as the mechanism of Ni3Sn4 suppression.
To verify that the microstructure variation would affect the interfacial strength, the high speed impact test was utilized. The impact energy of ENEPIG joints declined slower than that without Pd-doped after prolonged reflow. The enhanced impact strength and the transition of failure mode in the ENEPIG joints was attributed to the needle-like morphology of (Cu,Ni,Pd)6Sn5. The detailed mechanism of improved mechanical strength for solder joints with Pd dissolved was deliberately addressed and discussed regarding the distinct microstructural evolution in the ENEPIG joint.
Besides, the crystallographic orientation of ENIG/SnAgCu/Cu and ENEPIG/SnAgCu/Cu assembled solder joints was investigated. With the aid of EBSD analysis, various grain structures and preferred growth orientation of IMC on the Cu and Ni(P) substrates were observed. The distinctive growth behaviors of intermetallic compound on the Cu and Ni(P) substrates were associated with the cross-interaction of minor Cu, Ni and Pd elements. Finally, the correlation between microstructure variation and grain orientation was probed and discussed. The possible mechanism was also proposed.
1. L.F. Miller, “Controlled collapse reflow chip joining.” IBM J. Res. Develop. 13 (1969) 239.
2. J.H. Lau, Ball grid array technology, Mcgraw-Hill, New York, 1995.
3. G.R. Blackwell, The Electronic Packaging Handbook, Boca Raton, Florida: CRC Press, 2000, pp. 4.4-4.25.
4. M.E. Loomans, S. Vaynman, G. Ghosh and M.E. Fine, “Investigation of multi-component lead-free solders.” J. Electron. Mater. 23 (1994) 741.
5. A.A. Liu, H.K. Kim, K.N. Tu and P.A. Totta, “Spalling of Cu6Sn5 spheroids in the soldering reaction of eutectic SnPb on Cr/Cu/Au thin films.” J. Appl. Phys. 80 (1996) 2774.
6. H.K. Kim, K.N. Tu and P.A. Totta, “Ripening-assisted asymmetric spalling of Cu-Sn compound spheroids in solder joint on Si wafer.” Appl. Phys. Lett. 68 (1996) 2204.
7. S.K. Kang, R.S. Rai and S. Purrshothaman, “Interfacial reactions during soldering with lead-tin eutectic and lead (Pb)-free, tin-rich solders.” J. Electron. Mater. 25 (1996) 1113.
8. J.W. Nah and K.W. Paik, “Investigation of flip chip under bump metallization systems of Cu pads.” IEEE Trans. Compon. Packag. Technol. 25 (2002) 32.
9. C.E. Ho, R. Zheng, G.L. Luo, A.H. Lin and C.R. Kao, “Formation and resettlement of (AuxNi1-x)Sn4 in solder joints of ball-grid-array packages with the Au/Ni surface finish.” J. Electron. Mater. 29 (2000) 1175.
10. C.E. Ho, L.C. Shiau and C.R. Kao, “Inhibiting the formation of (Au1–xNix)Sn4 and reducing the consumption of Ni metallization in solder joints.” J. Electron. Mater. 31 (2002) 1264.
11. K.L. Lin and Y.C. Liu, “Reflow and property of Al/Cu/electroless Nickel/Sn-Pb solder bumps.” IEEE Trans. on Adv. Packag. 22 (1999) 575.
12. J.Y. Park, C.W. Yang, J.S. Ha, C.U. Kim, E.J. Kwon, S.B. Jung and C.S. Kang, “Investigation of interfacial reaction between Sn-Ag eutectic solder and Au/Ni/Cu/Ti thin film metallization.” J. Electron. Mater. 30 (2001) 1165.
13. J.W. Jang, P.G. Kim, K.N. Tu, D.R. Frear and P. Thompson, “Solder reaction-assisted crystallization of electroless Ni–P under bump metallization in low cost flip chip technology.” J. Appl. Phys. 85 (1999) 8456.
14. B.L. Young and J.G. Duh, “Interfacial reaction and microstructural evolution for electroplated Ni and electroless Ni in the under bump metallurgy with 42Sn-58Bi solder during annealing.” J. Electron. Mater. 30 (2001) 878.
15. C.Y. Liu, K.N. Tu, T.T. Sheng, C.H. Tung, D.R. Frear and P. Elenius, “Electron microscopy study of interfacial reaction between eutectic SnPb and Cu/Ni(V)/Al thin film metallization.” J. Appl. Phys. 87 (2000) 750.
16. M. Li, F. Zhang, W.T. Chen, K. Zeng, K.N. Tu, H. Balkan and P. Elenius, “Interfacial microstructure rvolution netween rutectic SnAgCu dolder and Al/Ni(V)/Cu thin films.” J. Mater. Res. 17 (2002) 1612.
17. M. McCormack, S. Jin, G.W. Kammlott and H.S. Chen, “New Pb-free solder alloy with superior mechanical-properties.” Appl. Phys. Lett. 63 (1993) 15.
18. K. Suganuma, “Advances in lead-free electronics soldering.” Current Opinion Solid State Mater. Sci. 5 (2001) 55.
19. K.S. Kim, S.H. Huh and K. Suganuma, “Effects of cooling speed on microstructure and tensile properties of Sn-Ag-Cu alloys.” Mater. Sci. Eng. A 333 (2002) 106.
20. C.S. Chang, A. Oscilowski and R.C. Bracken, “Future challenges in electronics packaging.” IEEE Circuits Devices Mag. 14 (1998) 45.
21. M. Abtew and G. Selvaduray, “Lead-free solders in microelectronics.” Mater. Sci. Eng. R 27 (2000) 95.
22. K.N. Tu, A.M. Gusak and M. Li, “Physics and materials challenges for lead-free solders.” J. Appl. Phys. 93 (2003) 1335.
23. K. Zeng and K.N. Tu, “Six cases of reliability study of Pb-free solder joints in electronic packing technology.” Mater. Sci. Eng. R 38 (2002) 55.
24. H. Ma and J.C. Suhling, “A review of mechanical properties of lead-free solders for electronic packaging.” J. Mater. Sci. 44 (2009) 1141.
25. D.R. Frear, J.W. Jang, J.K. Lin and C. Zang, “Pb-free solders for flip-chip interconnects.” JOM 53 (2001) 28.
26. I.E. Anderson, “Development of Sn-Ag-Cu and Sn-Ag-Cu-X alloys for Pb-free electronic solder applications.” J. Mater. Sci: Mater. Electron. 18 (2007) 55.
27. I.E. Anderson, B.A. Cook, J.L. Harringa and R.L. Terpstra, “Sn-Ag-Cu solders and solder joints: alloy development, microstructure, and properties.” JOM 54 (2002) 26.
28. I.E. Anderson, J.C. Foley, B.A. Cook, J. Harringa, R.L. Terpstra and O. Unal, “Alloying effects in near-eutectic Sn-Ag-Cu solder alloys for improved microstructural stability.” J. Electron. Mater. 30 (2001) 1050.
29. W. Liu and N.C. Lee, “The effects of additives to SnAgCu alloys on microstructure and drop impact reliability of solder joints.” JOM 59 (2007) 26.
30. R.S. Pandher, B.G. Lewis, R. Vangaveti and B. Singh, “Drop shock reliability of lead-free alloys – effect of micro-additives.” Electronic Components and Technology Conference 2007 Proceedings, p.669.
31. R.C. Agarwala and S. Ray, “Variation of structure in electroless Ni-P films with phosphorous content.” Z. Metallkd. 79 (1988) 472.
32. J.H. Yeh, “Interfacial reactions and wetting property between electroless Ni in the under bump metallurgy (UBM) and Sn-37Pb solder.” Master Thesis, National Tsing Hua University, Hsinchu, Taiwan (2000).
33. S.V.S. Tyagi, V.K. Tondon and S. Ray, “Study of the crystallization behavior of electroless Ni-P films by electron and x-ray diffraction.” Z. Metallkd. 76 (1985) 492.
34. M. Erming, L. Shoufu and L. Pengxing, “A transmission electron microscopy study on the crystallization of amorphous Ni-P electroless deposited coatings.” Thin Solid Films 166 (1988) 273.
35. M. He, Z. Chen and G. Qi, “Solid state interfacial reaction of Sn–37Pb and Sn–3.5Ag solders with Ni–P under bump metallization.” Acta Mater. 52 (2004) 2047.
36. M. He, W.H. Lau, G. Qi and Z. Chen, “Intermetallic compound formation between Sn–3.5Ag solder and Ni-based metallization during liquid state reaction.” Thin Solid Films 462 (2004) 376.
37. A. Kumar, Z. Chen, S.G. Mhaisalkar, C.C. Wong, P.S. Teo and V. Kripesh, “Effect of Ni–P thickness on solid-state interfacial reactions between Sn–3.5Ag solder and electroless Ni–P metallization on Cu substrate.” Thin Solid Films 504 (2006) 410.
38. S.J. Wang and C.Y. Liu, “Retarding growth of Ni3P crystalline layer in Ni(P) substrate by reacting with Cu-bearing Sn(Cu) solders.” Scripta Mater. 49 (2003) 813.
39. Y.C. Lin and J.G. Duh, “Optimal phosphorous content selection for the soldering reaction of Ni-P under bump metallization with Sn-Ag-Cu solder.” J. Electron. Mater. 35 (2006) 1665.
40. Y.C. Lin, J.G. Duh and B.S. Chiou, “Wettability of Electroplated Ni-P in under bump metallurgy with Sn-Ag-Cu solder.” J. Electron. Mater. 35 (2006) 7.
41. Y.C. Lin and J.G. Duh, “Effect of surfactant on electrodeposited Ni–P layer as an under bump metallization.” J. Alloys Compd. 439 (2007) 74.
42. Y.C. Lin, T.Y. Shih, S.K. Tien and J.G. Duh, “Morphological and microstructural evolution of phosphorous-rich layer in SnAgCu/Ni-P UBM solder joint.” J. Electron. Mater. 36 (2007) 1469.
43. Y.C. Lin and J.G. Duh, “Phase transformation of the phosphorus-rich layer in SnAgCu/Ni–P solder joints.” Scripta Mater. 54 (2006) 1661.
44. Y.C. Lin, T.Y. Shih, S.K. Tien and J.G. Duh, “Suppressing Ni–Sn–P growth in SnAgCu/Ni–P solder joints.” Scripta Mater. 56 (2007) 49.
45. Y.C. Lin, K.J. Wang and J.G. Duh, “Detailed phase evolution of a phosphorous-rich layer and formation of the Ni-Sn-P compound in Sn-Ag-Cu/electroplated Ni-P solder joints.” J. Electron. Mater. 39 (2010) 283.
46. J.W. Yoon, B.I. Noh and S.B. Jung, “Comparison of interfacial stability of Pb-free solders (Sn-3.5Ag, Sn-3.5Ag-0.7Cu, and Sn-0.7Cu) on ENIG-plated Cu during aging.” IEEE Trans. Compon. Packag. Technol. 33 (2010) 64.
47. M.H. Park, E.J. Kwon, H.B. Kang, S.B. Jung and C.W. Yang, “TEM study on the interfacial reaction between electroless plated Ni-P/Au UBM and Sn-3.5Ag solder.” Met. Mater. Int. 13 (2007) 235.
48. M.O. Alam, Y.C. Chan and K.N. Tu, “Effect of reaction time and P content on mechanical strength of the interface formed between eutectic Sn–Ag solder and Au/electroless Ni(P)/Cu bond pad.” J. Appl. Phys. 94 (2003) 4108.
49. C.W. Hwang, K. Suganuma, M. Kiso and S. Hashimoto, “Interface microstructures between Ni–P alloy plating and Sn–Ag–(Cu) lead-free solders.” J. Mater. Res. 18 (2003) 2540.
50. J.W. Yoon and S.B. Jung, “Effect of surface finish on interfacial reactions of Cu/Sn–Ag–Cu/Cu(ENIG) sandwich solder joints.” J. Alloys Compd. 448 (2008) 177.
51. J.W. Yoon, J.H. Park, C.C. Shur and S.B. Jung, “Characteristic evaluation of electroless nickel–phosphorus deposits with different phosphorus contents.” Microelectron. Eng. 84 (2007) 2552.
52. J.M. Koo and S.B. Jung, “Effect of substrate metallization on mechanical properties of Sn–3.5Ag BGA solder joints with multiple reflows.” Microelectron. Eng. 82 (2005) 569.
53. H.B. Kang, J.H. Bae, J.W. Lee, M.H. Park, Y.C. Lee, J.W. Yoon, S.B. Jung and C.W. Yang, “Control of interfacial reaction layers formed in Sn–3.5Ag–0.7Cu/electroless Ni–P solder joints.” Scripta Mater. 60 (2009) 257.
54. P. Snugosky, P. Arrowsmith and M. Romansky, “Electroless Ni/immersion Au interconnects: Investigation of black pad in wire bonds and solder joints.” J. Electron. Mater. 30 (2001) 1262.
55. K. Zeng, R. Stierman, D. Abbott and M. Murtuza, “The root cause of black pad failure of solder joints with electroless Ni/immersion gold plating.” JOM 58 (2006) 75.
56. B.K. Kim, S.J. Lee, J.Y. Kim, K.Y. Ji, Y.J. Yoon, M.Y. Kim, S.H. Park and J.S. Yoo, “Origin of surface defects in PCB final finishes by the electroless nickel immersion gold process.” J. Electron. Mater. 37 (2008) 527.
57. K. Suganuma and K.S. Kim, “The root causes of the “Black pad” phenomenon and avoidance tactics.” JOM 60 (2008) 61.
58. Y.S. Won, S.S. Park, J. Lee, J.Y. Kim and S.J. Lee, “The pH effect on black spots in surface finish: Electroless nickel immersion gold.” Appl. Surf. Sci. 257 (2010) 56.
59. J. Osenbach, A. Amin, F. Baiocchi and J. Delucca, “ENIG corrosion induced by second-phase precipitation.” J. Electron. Mater. 38 (2009) 2592.
60. L. Juanjuan, Z. Zhenqing and J. Lee, “Wire bonding performance and solder joint reliability investigation on ENEPIG finish substrate.” 2010 International Conference on Electronic Packaging Technology & High Density Packaging Proceeding, p.240.
61. Z. Mei and A. Eslambolchi, “Evaluation of Ni/Pd/Au as an alternative metal finish on PCB.” Circuit World 25 (1999) 18.
62. Y. Oda, M. Kiso, S. Kurosaka, A. Okada, K. Kitajima, S. Hashimoto and D. Gudeczauskas, “Study of suitable palladium and gold thickness in ENEPIG deposits for lead free soldering and gold wire bonding.” in: 41st International Symposium Microelectronics, 2008.
63. J. Mao, B. Liu, M. Li, Y. Wang and D. Mao, “IMC formation between electroless Ni/Pd/Au surface finish and SnAgCu solder.” 2008 International Conference on Electronic Packaging Technology & High Density Packaging Proceeding, p.1.
64. C.H. Fu, L.Y. Hung, D.S. Jiang, C.C. Chang, Y.P. Wang and C.S. Hsiao, “Evaluation of new substrate surface finish: electroless nickel/rlectroless palladium/immersion gold (ENEPIG).” 2008 Electronic Components and Technology Conference Proceedings, p.1931.
65. Y.M. Kim, J.Y. Park and Y.H. Kim, “Effect of Pd thickness on the interfacial reaction and shear strength in solder joints Between Sn-3.0Ag-0.5Cu solder and electroless nickel-electroless palladium-immersion gold (ENEPIG) surface finish.” J. Electron. Mater. 41 (2012) 763.
66. J.W. Yoon, B.I. Noh and S.B. Jung, “Comparative study of ENIG and ENEPIG as surface finishes for a Sn-Ag-Cu solder joint.” J. Electron. Mater. 40 (2011) 1950.
67. S.P. Peng, W.H. Wu, C.E. Ho and Y.M. Huang, “Comparative study between Sn37Pb and Sn3Ag0.5Cu soldering with Au/Pd/Ni(P) tri-layer structure.” J. Alloys Compd. 493 (2010) 431.
68. W.H. Wu, C.S. Lin, S.H. Huang and C.E. Ho, “Influence of palladium thickness on the soldering reactions between Sn-3Ag-0.5Cu and Au/Pd(P)/Ni(P) surface finish.” J. Electron. Mater. 39 (2010) 2387.
69. C.E. Ho, W.H. Wu, L.H. Hsu and C.S. Lin, “Solid–solid reaction between Sn-3Ag-0.5Cu alloy and Au/Pd(P)/Ni(P) metallization pad with various Pd(P) thicknesses.” J. Electron. Mater. 41 (2012) 11.
70. C.P. Lin and C.M. Chen, “Solid-state interfacial reactions at the solder joints employing Au/Pd/Ni and Au/Ni as the surface finish metallizations.” Microelectron. Reliab. 52 (2012) 385.
71. Y.C. Sohn and J. Yu, “Correlation between chemical reaction and brittle fracture found in electroless Ni(P)/immersion gold–solder interconnection.” J. Mater. Res. 50 (2005) 1931.
72. Y.C. Sohn, J. Yu, S.K. Kang, D.Y. Shih and T.Y. Lee, “Spalling of intermetallic compounds during the reaction between lead-free solders and electroless Ni-P metallization.” J. Mater. Res. 19 (2004) 2428.
73. J.W. Jang, D.R. Frear, T.Y. Lee and K.N. Tu, “Morphology of interfacial reaction between lead-free solders and electroless Ni–P under bump metallization.” J. Appl. Phys. 88 (2000) 6360.
74. I.T. Wang, J.G. Duh, C.Y. Cheng and J. Wang, “Interfacial reaction and elemental redistribution in Sn3.0Ag0.5Cu–xPd/immersion Au/electroless Ni solder joints after aging.” Mater. Sci. Eng. B 177 (2012) 278.
75. S.C. Yang, C.C. Chang, M.H. Tsai and C.R. Kao, “Effect of Cu concentration, solder volume, and temperature on the reaction between SnAgCu solders and Ni.” J. Alloys Compd. 499 (2010) 149.
76. J.Y. Kim, Y.C. Sohn and J. Yu, “Effect of Cu content on the mechanical reliability of Ni/Sn–3.5Ag system.” J. Mater. Res. 22 (2007) 770.
77. K. Zeng, M. Pierce, H. Miyazaki and B. Holdford, “Optimization of Pb-free solder joint reliability from a metallurgical perspective.” J. Electron. Mater. 41 (2012) 253.
78. A. Kumar and Z. Chen, “Interdependent Intermetallic Compound Growth in an Electroless Ni-P/Sn-3.5Ag Reaction Couple” J. Electron. Mater. 40 (2011) 213.
79. H. Kim, M. Zhang, C.M. Kumar, D. Suh, P. Liu, D. Kim, M. Xie and Z. Wang, “Improved drop reliability performance with lead free solders of low Ag content and their failure modes.” 2007 Electronic Components and Technology Conference Proceedings, p.962.
80. S.J. Wang and C.Y. Liu, “Kinetic analysis of the interfacial reactions in Ni/Sn/Cu sandwich structures.” J. Electron. Mater. 35 (2006) 1955.
81. S.J. Wang and C.Y. Liu, “Asymmetrical solder microstructure in Ni/Sn/Cu solder joint.” Scripta Mater. 55 (2006) 347.
82. Y. Tian, L. Niu and C. Wang, “Analysis of Cu6Sn5 grain orientations in Sn3.0Ag0.5Cu lead-free solder joints.” 2011 International Conference on Electronic Packaging Technology & High Density Packaging Proceeding, p.353.
83. J. Gong, C. Liu, P.P. Conway and V.V. Silberschmidt, “Evolution of CuSn intermetallics between molten SnAgCu solder and Cu substrate.” Acta Mater. 56 (2008) 4291.
84. M. Yang, M. Li, L. Wang, Y. Fu, J. Kim and L Weng, “Growth behavior of Cu6Sn5 grains formed at an Sn3.5Ag/Cu interface.” Mater. Lett. 65 (2011) 1506.
85. W. Liu, Y. Tian, C. Wang, X. Wang and R. Liu, “Morphologies and grain orientations of Cu–Sn intermetallic compounds in Sn3.0Ag0.5Cu/Cu solder joints.” Mater. Lett. 86 (2012) 157.
86. M. Yang, M. Li and J. Kim, “Texture evolution and its effects on growth of intermetallic compounds formed at eutectic Sn37Pb/Cu interface during solid-state aging.” Intermetallics 31 (2012) 177.
87. P.A. Totta and R.P. Sopher, “SLT device metallurgy and its monolithic extension.” IBM J. Res. Develop. 13 (1969) 226.
88. J.H. Lau and S.W.R. Lee, Chip scale package, CSP: Design, Materials, Process and applications, McGraw-Hill, New York, 1999.
89. C.A. Harper, Electronic packaging and interconnection handbook, 3rd edition, McGraw-Hill, New York, 2000.
90. J.W. Morris, J.L.F. Goldstein and Z. Mei, “Microstructure and mechanical properties of Sn-In and Sn-Bi solder.” JOM 45 (1993) 25.
91. R.E. Reed-Hill and R. Abbaschian, Physical metallurgy principles. PWS, Boston, 1994.
92. W.R. Lewis, “Notes on soldering.” Tin Research Institute, 66 (1961).
93. S. Topani, S. Gopakumar, P. Borgesen and K. Srihari, “Reliability of lead-free solder interconnections-A review.” 2002 annual reliability and maintainability symposium, Piscataway, NJ: IEEE, 2002, p. 423.
94. Y. Kariya, Y. Hirata and M. Otsuka, “Effect of thermal cycles on the mechanical strength of quad flat pack leads/Sn-3.5Ag-X (X = Bi and Cu) solder joints.” J. Electron. Mater. 28 (1999) 1263.
95. F.A. Lowenheim, Modern electroplating, 2nd edition, Wiley, New York, 1974.
96. P. Nash, Phase diagrams of binary nickel alloys. ASM Int., 1991, p.235.
97. T.B. Massalski, H. Okamoto, P.R. Subramanian and L. Kacprzak, Binary Alloy Phase Diagrams, ASM Int., Materials Park, Ohio, 1990, p.1481.
98. P.G. Kim, J.W. Jang, T.Y. Lee and K.N. Tu, “Interfacial reaction and wetting behavior in eutectic SnPb solder on Ni/Ti thin films and Ni foils.” J. Appl. Phys. 86 (1999) 6746.
99. G. Ghosh, “Kinetics of interfacial reaction between eutectic Sn-Pb solder and Cu/Ni/Pd metallizations.” J. Electron. Mater. 28 (1999) 1238.
100. K.N. Tu and K. Zeng, “Tin-lead (SnPb) solder reaction in flip chip technology.” Mater. Sci. Eng. R 34 (2001) 1.
101. Y. Oda, M. Kiso and S. Hashimoto, “IMC growth study on Ni-P/Pd/Au film and Ni-P/Au film using Sn/Ag/Cu lead-free solder. ” Proceedings of IPC Printed Circuit Expo 2006.
102. JEDEC, 2003, JEDEC Standard No. JESD22-B111.
103. T. Morita, R. Kajiwara, I. Ueno and S. Okabe, “New method for estimating impact strength of solder-ball-bonded interfaces in semiconductor packages.” Jpn. J. Appl. Phys. 47 (2008) 6566.
104. F. Song, S.W. R. Lee, K. Newman, B. Sykes and S. Clark, “High-speed solder ball shear and pull tests vs. board level mechanical drop tests: correlation of failure mode and loading speed.” Electronic Components and Technology Conference 2007 Proceedings, p.1504.
105. Y. Xu, S. Ou, K.N. Tu, K. Zeng and R. Dunne, “Measurement of impact toughness of eutectic SnPb and SnAgCu solder joints in ball grid array by mini-impact tester.” J. Mater. Res. 23 (2008) 1482.
106. S. Ou, Y. Xu, K.N. Tu, M.O. Alam and Y.C. Chan, “Micro-impact test on lead-free BGA balls on Au/electrolytic Ni/Cu bond pad.” Electronic Components and Technology Conference 2005 Proceedings, p.467.
107. D.S. Liu, C.Y. Kuo, C.L. Hsu, G.S. Shen, Y.R. Chen and K.C. Lo, “Failure mode analysis of lead-free solder joints under high speed impact testing.” Mater. Sci. Eng. A 494 (2008) 196.
108. S.S. Ha, J.K. Jang, S.O. Ha, J.W. Kim, J.W. Yoon, B.W. Kim, S.K. Park and S.B. Jung, “Mechanical property evaluation of Sn-3.0A-0.5Cu BGA solder joints using high-speed ball shear test.” J. Electron. Mater. 38 (2009) 2489.
109. S.K. Seo, S.K. Kang, M.G. Cho, D.Y. Shih and H.M. Lee, “The crystal orientation of β-Sn grains in Sn-Ag and Sn-Cu solders affected by their interfacial reactions with Cu and Ni(P) under bump metallurgy.” J. Electron. Mater. 38 (2009) 2461.
110. L.P. Lehman, Y. Xing, T.R. Bieler and E.J. Cotts, “Cyclic twin nucleation in tin-based solder alloys.” Acta Mater. 58 (2010) 3546.
111. B.F. Dyson, T.R. Anthony and D. Turnbull, “Interstitial diffusion of copper in tin.” J. Appl. Phys. 38 (1967) 3408.
112. D.C. Yeh and H.B. Huntington, “Extreme fast-diffusion system – nickel in single-crystal tin.” Phys. Rev. Lett. 53 (1984) 1469.
113. B.F. Dyson, “Diffusion of gold and silver in tin single crystals.” J. Appl. Phys. 37 (1966) 2375.
114. T.R. Bieler, H. Jiang, L.P. Lehman, T. Kirkpatrick, E.J. Cotts and B. Nandagopal, “Influence of Sn grain size and orientation on the thermomechanical response and reliability of Pb-free solder joints.” Electronic Components and Technology Conference 2006 Proceedings, p.1462.
115. T.K. Lee, K.C. Liu and T.R. Bieler, “Microstructure and orientation evolution of the Sn phase as a function of position in ball grid arrays in Sn-Ag-Cu solder joints.” J. Electron. Mater. 38 (2009) 2685.
116. M. Lu, D.Y. Shih, P. Lauro, C. Goldsmith and D.W. Henderson, “Effect of Sn grain orientation on electromigration degradation mechanism in high Sn-based Pb-free solders.” Appl. Phys. Lett. 92 (2008) 211909.
117. Y.M. Lin, C.J. Zhan, J.Y. Juang, J.H. Lau, T.H. Chen, R. Lo, M. Kao, T. Tian and K.N. Tu, “Electromigration in Ni-Sn intermetallic micro bump joint for 3D IC chip stacking.” Electronic Components and Technology Conference 2011 Proceedings, p.351.
118. C.J. Zhan, J.Y. Juang, Y.M. Lin, Y.W. Huang, K.S. Kao, T.F. Yang, S.T. Lu, J.H. Lau, T.H. Chen, R. Lo and M.J. Kao, “Development of fluxless chip-on-wafer bonding process for 3D IC chip stacking with 30 μm pitch lead-free solder micro bumps and reliability characterization.” Electronic Components and Technology Conference 2011 Proceedings, p.14.
119. T. Laurila, V. Vuorinen and M. Paulasto-Krockel, “Impurity and alloying effects on interfacial reaction layers in Pb-free soldering.” Mater. Sci. Eng. B 68 (2010) 1.
120. M. Schaefer, R.A. Fournelle and J. Liang, “Theory for intermetallic phase growth between Cu and liquid Sn-Pb solder based on grain boundary diffusion control.” J. Electron. Mater. 27 (1998) 1167.
121. A. Kumar and Z. Chen, “Interdependent intermetallic compound growth in an electroless Ni-P/Sn-3.5Ag reaction couple.” J. Electron. Mater. 40 (2011) 213.
122. G. Ghosh, “Coarsening kinetics of Ni3Sn4 scallops during interfacial reaction between liquid eutectic solders and Cu/Ni/Pd metallization.” J. Appl. Phys. 88 (2000) 6887.
123. P.W. Voorhees, “The theory of Ostwald ripening.” J. Stat. Phys. 38 (1985) 231.
124. T.S. Huang, H.W. Tseng, C.T. Lu, and Y.H. Hsiao, Y.C. Chuang and C.Y. Liu, “Growth mechanism of a ternary (Cu,Ni)6Sn5 compound at the Sn(Cu)/Ni(P) interface. ” J. Electron. Mater. 39 (2010) 2382.
125. N. Miyaura and A. Suzuki, “Palladium-catalyzed cross-coupling reactions of organoboron compounds.” Chem. Rev. 95 (1995) 2457.
126. P. Bindra and J. Roldan, “Mechanisms of electroless metal plating.” J. Electrochem. Soc. 132 (1985) 2581.
127. F.R. de Boer, Cohesion in metals: transition metal alloys, Noth-Holland, 1989.
128. K.J. Laider, “The development of the Arrhenius equation.” J. Chem. Educ. 61 (1984) 494.
129. V. Vuorinen, H. Yu, T. Laurila and J.K. Kivilahti, “Formation of intermetallic compounds between liquid Sn and various CuNix metallizations.” J. Electron. Mater. 37 (2008) 792.
130. R. Zhang, F. Guo, J. Liu, H. Shen and F. Tai, “Morphology and growth of intermetallics at the interface of Sn-based solders and Cu with different surface finishes.” J. Electron. Mater. 38 (2009) 241.
131. S.S. Ha, J. Park and S.B. Jung, “Effect of Pd addition in ENIG surface finish on drop reliability of Sn-Ag-Cu solder joint.” Mater. T. JIM 52 (2011) 1553.
132. Z. Mei, A.J. Sunwoo and J.W. Morris, “Analysis of low-temperature intermetallic growth in Copper-Tin diffusion couples.” Metall. Trans. A 23A (1992) 857.
133. H.T. Lee, M.H. Chen, H.M. Jao and T.L. Liao, “Influence of interfacial intermetallic compound on fracture behavior of solder joints.” Mater. Sci. Eng. A 358 (2003) 134.
134. H. Fei, K. Yazzie, N. Chawla and H.Q. Jiang, “Modeling fracture of Sn-rich (Pb-free) solder joints under mechanical shock conditions.” J. Electron. Mater. 41 (2012) 2089.
135. M.S. Park and R. Arroyave, “Early stages of intermetallic compound formation and growth during lead-free soldering.” Acta Mater. 58 (2010) 4900.
136. C.Y. Ho and J.G. Duh, “Wetting kinetics and wettability enhancement of Pd added electrolytic Ni surface with molten Sn–3.0Ag–0.5Cu solder.” Mater. Lett. 92 (2013) 278.
137. H. Flandorfer, U. Saeed, C. Luef, A. Sabbar and H. Ipser, “Interfaces in lead-free solder alloys: Enthalpy of formation of binary Ag-Sn, Cu-Sn and Ni-Sn intermetallic compounds.” Thermochim. Acta 459 (2007) 34.
138. Y. Yang, H. Lu, C. Yu and J. Chen, “First-principles calculations of structural, thermodynamic and electronic properties of intermetallic compounds in solder.” 2009 International Conference on Electronic Packaging Technology & High Density Packaging Proceeding, p.384
139. S.K. Seo, S.K. Kang, D.Y. Shih and H.M. Lee, “An investigation of microstructure and microhardness of Sn-Cu and Sn-Ag solders as functions of alloy composition and cooling rate.” J. Electron. Mater. 38 (2009) 257.
140. G. Ghosh, “Thermodynamic modeling of the Nickel-Lead-Tin system.” Metall. Mater. Trans. A 30A (1999) 1481.
141. J.O. Suh, K.N. Tu and N. Tamura, “Preferred orientation relationship between Cu6Sn5 scallop-type grains and Cu substrate in reactions between molten Sn-based solders and Cu.” J. Appl. Phys. 102 (2007) 063511.
142. J.O. Suh, K.N. Tu and N. Tamura, “Dramatic morphological change of scallop-type Cu6Sn5 formed on (001) single crystal copper in reaction between molten SnPb solder and Cu.” Appl. Phys. Lett. 91 (2007) 051907.
143. V. Vuorinen, T. Laurila, T. Mattila, E. Heikinheimo and J.K. Kivilahti, “Solid-state reactions between Cu(Ni) Alloys and Sn.” J. Electron. Mater. 36 (2007) 1355.
144. D. Mu, H. Yasuda, H. Huang and K. Nogita, “Growth orientations and mechanical properties of Cu6Sn5 and (Cu,Ni)6Sn5 on poly-crystalline Cu.” J. Alloys Compd. 536 (2012) 38.
145. H.T. Chen, L. Wang, J. Han, M.Y. Li, Q.B. Wu and J.M. Kim, “Grain orientation evolution and deformation behaviors in Pb-free solder interconnects under mechanical stresses.” J. Electron. Mater. 40 (2011) 2445.
146. T.T. Mattila and J.K. Kivilahti, “The failure mechanism of recrystallization-assisted cracking of solder interconnections.” TMS2013 Annual Meeting Supplemental Proceedings (2013) 403.
147. S.K. Seo, M.G. Cho and H.M. Lee, “Crystal orientation of β-Sn grain in Ni(P)/Sn-0.5Cu/Cu and Ni(P)/Sn-1.8Ag/Cu joints.” J. Mater. Res. 25 (2010) 1950.