簡易檢索 / 詳目顯示

研究生: 黃慕懷
Mu-Huai Huang
論文名稱: 基於局部形狀特徵之三維模型擷取
Local Shape Feature Extraction for 3D Model Retrieval
指導教授: 賴尚宏
Shang-Hong Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 43
中文關鍵詞: 三維模型擷取局部形狀特徵
外文關鍵詞: 3D Model Retireval, Bag-of-features, 3D Shape Feature
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們提出一個新的形狀描述元件來提取三維模型特徵,進一步地應用到三維之模型擷取。過去,三維模型特徵僅使用多對點之間的關係,失去了原本模型的幾何結構,而新的形狀描述元件保留了模型的局部幾何資訊。

    首先,在一個三維模型的點上,我們根據局部方向資訊建立一對應的立方網格。每個點上創建的網格便可與模型表面相交而得到二元立體網格。接著,我們使用距離轉換(Distance Transform)減低同種模型間的細微變異影響。收集了各種模型的每個距離轉換立方體(Distance Transform Cube)後,即可使用k-means分群法建立一個DTC字典。立基於此字典我們對每個三維模型產生出DTC分布直方圖,並應用在三維模型擷取系統上。

    經由實驗結果我們驗證了此新形狀描述元件的功效,當加入更多幾何資訊可創造出更具功效之模型特徵。


    In this thesis, we propose a new 3D shape descriptor to extract representative shape features from 3D models for 3D model retrieval. Our approach computes information from the local shape geometrical structures and employs the bag-of-features representation. First of all, we build the descriptor by creating a cube grid according to the local shape information of one vertex and intersecting this cube with the surface of this 3D model. For the intersected cube, we apply the distance transform to reduce the within-class variation. The Distance-Transform-Cubes (DTCs) sets created by the vertices from many 3D models are then collected for building a DTCs’ dictionary by k-means clustering. As the bag-of-feature method, we finally represent a 3D model based on the DTCs’ dictionary by a 1D histogram shape feature called Distance Transform Cube Histogram (DTCH) to perform the retrieval task. In addition, we combine the DTCH with geometrical information, such as distance and angle computed from the 3D model to generate higher-dimensional DTCH-based shape descriptiors. Our experimental results show the superior performance by using the new descriptors for 3D model retrieval.

    Concept List of Figures II List of Table III Chapter 1 Introduction 1 Chapter 2 Previous Work 7 Chapter 3 Proposed Method 11 3.1. Local Surface Cube Intersection Descriptors 12 3.2. Distance Transform Cube 17 3.3. Bag-of-Features Representation 20 3.4. Shape Feature 21 3.5. Distance Measure 24 Chapter 4 Experimental Results 26 4.1. DTC Dictionary Construction 29 4.2. DTCH Retrieval on “Test” Dataset 31 4.3. DDTCH Retrieval on “Test” Dataset 33 4.4. DTC3d and DTC4d Retrieval on “Test” Dataset 35 Chapter 5 Conclusion and Discussion 39 References 41

    References

    [1] C. B. Akgül, F. Schmitt, B. Sankur, Y. Yemez , "Multivariate Density-Based 3D Shape Descriptors", In R.C. Veltkamp and F. B. ter Haar, editors, SHREC2007: Shape Retrieval Contest, Technical Report UU-CS-2007-015, June 2007.
    [2] B. Bustos, D. Keim, D. Saupe, and T. Schreck. Content-based 3D object retrieval. IEEE Computer Graphics and Applications, 27(4):22-27. IEEE Computer Society 2007.
    [3] D. Chen, X. Tian, Y. Shen, and M. Ouhyoung. On visual similarity based 3D model retrieval. Computer Graphics Forum, 22(3):223-232, 2003.
    [4] N. D. Cornea, M. F. Demirci, D. Silver, A. Shokoufandeh, S. J. Dickinson, P. B. Kantor: 3D Object Retrieval using Many-to-many Matching of Curve Skeletons. SMI: 368-373, 2005:

    [5] M. Kazhdan, B. Chazelle, D. Dobkin, T. Funkhouser, and S. Rusionkiewicz, “A Reflective Symmetry Descriptor for 3D Models,” Algorithmica: special issue, 2003.
    [6] R. Ohbuchi, J. Kobayashi, Unsupervised Learning from a Corpus for Shape-Based 3D Model Retrieval, poster paper, in Proc. ACM MIR 2006, Santa Barbara, CA, U.S.A., Oct.26-27, pp. 163-172, 2006.
    [7] R. Ohbuchi, T. Minamitani, T. Takei, Shape-similarity search of 3D models by using enhanced shape functions, International Journal of Computer Applications in Technology (IJCAT), 23(3/4/5), pp. 70-85, 2005.
    [8] R. Osada, T. Funkhouser, B. Chazele, D. Dobkin, Shape Distributions, ACM TOG, 21(4), pp. 807-832, 2002.
    [9] P. Shilane, P. Min, M. Kazhdan, T. Fucnhouser, The Princeton Shape Benchmark, Proc. SMI ’04, pp. 167-178, 2004.
    http://shape.cs.princeton.edu/search.html.
    [10] H. Sundar. D. Silver, N. Gagvani, and S. J. Dickinsion. Skeletion based shape matching and retrieval. In SMI ’03 : Proceedings of the shape Modeling International 2003I. pages 130- 142. Washington, DC, USA. 2003.
    [11] J. Tangelder and R. Vetkamp. A survey of content based 3D shape retrieval methods. In Proc. International Conference on Shape Modeling and Appleications (SMI’ 04), pages 145-156. IEEE CS Press, 2004.
    [12] R. C. Veltkamp, R. Ruijsenaars, M. Spagnuolo, R. Van Zwol, F. ter Haar, SHREC2006 3D Shape Retrieval Contest, Utrecht University Dept. Info. and Comp. Sciences, Technical Report UU-CS-2006-030 (ISSN: 0924-3275) http://give-lab.cs.uu.nl/shrec/shrec2006/index.html
    [13] A. S. Mian, M. Bennamoun, R. A. Owens: Three-Dimensional Model-Based Object Recognition and Segmentation in Cluttered Scenes. IEEE Trans. Pattern Anal. Mach. Intell. 28(10): 1584-1601 ,2006.
    [14] M. Marszalek and C. Schmid. Spatial Weighting for Bag-Of-Features. In CVPR, pages 2118–2125, Washington, DC, USA, 2006.
    [15] J. Zhang, M. Marszałek, S. Lazebnik, and C. Schmid. Local features and kernels for classification of texture and object categories: An in-depth study. Technical Report RR-5737, INRIA Rhˆone-Alpes, Nov 2005.
    [16] B. J. Frey, D. Dueck. Clustering by passing messages between data points. Science, Vol 315, No 5814, pp 972-976, February 2007.
    [17]E. Wahl, U. Hillenbrand, G. Hirzinger, Surflet-Pair-Relation Histograms: A Statistical 3D-Shape Representation for Rapid Classification, Proc. 3DIM 2003, pp. 474-481, 2003.
    [18] R. Ohbuchi, T. Otagiri, M. Ibato, and T. Takei, “Shape-similarity search of three-dimensional models using parameterized statistics,” in Proceedings of the 10th Pacific Conference on Computer Graphics and Applications, pp. 265–274, Beijng, China, October 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE