簡易檢索 / 詳目顯示

研究生: 周正賢
Cheng-Hsien Chou
論文名稱: 以C軸優選氮化鋁製作高頻聲波元件之研究
Fabrication of High Frequency Acoustic Devices by using Preferred C-axis Orientation Aluminum Nitride
指導教授: 黃金花
Jin-Hua Huang
林諭男
I-Nan Lin
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 94
語文別: 中文
論文頁數: 145
中文關鍵詞: 表面聲波濾波器薄膜體聲波共振器氮化鋁濺鍍奈米微晶鑽石
外文關鍵詞: SAW filter, FBAR, AlN, sputtering, UNCD
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在手持式行動電話、全球衛星定位系統等需要輕量、小尺寸之高頻前端線路應用上,由於陶瓷製作之元件,在模組中體積太大,利用微加工製作聲波元件技術可將模組尺寸縮小。氮化鋁為聲速最快之壓電材料,在高頻線路的應用上,常可見到利用氮化鋁以製作元件,本論文先探討如何成長高品質c軸優選之氮化鋁材料,之後並與微加工製程整合,製作表面聲波與體聲波元件。
    在表面聲波元件上,我們主要是利用高聲速之材料如奈米微晶鑽石,在其上利用緩衝層以成長高品質之c軸優選之氮化鋁,再利用黃光製程在氮化鋁上製作指叉狀電極,製作出403 MHz之氮化鋁/矽及850 MHz頻段之氮化鋁/奈米微晶鑽石表面聲波濾波器。
    利用緩衝層TiN 150 nm/ Ti 100nm,可大幅提升其在氮化鋁在奈米微晶鑽石基板上之結晶性及c軸優選取向(FWHM=5.2°),而由二次離子縱深成分分析,其擴散現象也因為TiN阻擋層大幅降低,且在附著性測試上我們可得到其Critical Load為33.03 mN,附著性為測試試片最佳,此為在鑽石基板上成長較佳結晶性氮化鋁之方法,利用3um線寬製程之氮化鋁/奈米微晶鑽石基板可得到10200 m/s之表面聲速,頻率為850 MHz。
    而薄膜體聲波共振器(FBAR)之結構中,氮化鋁成長在鉬/氮化矽上可以得到平坦之表面~2.811 nm,由TEM觀察在鉬金屬上氮化鋁較容易形成AlN(002)之晶面。目前利用體微加工技術製作鈦/氮化鋁/鈦/氮化矽之體聲波共振器其頻率為2.7GHz,損耗可達~ -5dB,而鉬/氮化鋁/鉬/氮化矽元件之機電耦合係數可達4.0~5.8%,Q值約220。而以BVD model,可將共振器之量測結果轉換為等效線路,利用線路值可預測元件之損耗之來源及效能,並可預測多階共振器串並聯後頻寬與插入損失之關係,得到濾波器之響應。並以此結果製作可得到中心頻率為1.68 GHz,頻寬為183 MHz之體聲波濾波器。


    A high performance piezoelectric film, such as Aluminum nitride (AlN), combined with high acoustic wave velocity substrate, such as diamond, is a promising for applications as high frequency SAW devices. However, diamond films with smoother surface are urgently needed. We first grow diamond films using CH4/Ar plasma to result in a diamond film with very small grain size (< 10 nm), the ultra-nano-crystalline films (UNCD). Then we grow high quality AlN thin films on UNCD, using TiN 150 nm/Ti 100 nm buffer layer for enhancing the adhesion of the AlN on UNCD. The scratch test shows the critical load of the sample was 33 mN. By tuning the buffer layer and AlN deposition parameters, c-axis oriented AlN with a thickness of 1 µm were obtained by reactive RF-sputtering technique. The columnar structured AlN grains, with c-axis oriented almost perpendicular to the diamond surface were obtained. AFM image showed the average surface roughness (Ra) was less than 15 nm and the d33 value measured by PFM wax 4.9 pm/V. The AlN/TiN/Ti/UNCD thin films show good potential for Diamond SAW device applications. The measurement by using 3 □m linewidth IDT reveal the frequency was 850 MHz and the surface wave velocity was 10200 m/s.
    For the film bulk acoustic wave device(FBAR), effect of buffer layer on the characteristics of the AlN thin films deposited on SiNx/Si substrate was systematically examined. Among the buffer layers examined, both Mo and Ti buffer layers can not only greatly enhance the (002) preferred orientation of the films, but also improve the smoothness of the AlN films, whereas the Al thin films contain large grains microstructure and resulting in rough surface and wide distribution of (002) preferred orientation of the films. AlN thin films with smooth surface with (r.m.s.< 5 nm) and narrow distribution of grains’ orientation, which is suitable for fabricating the devices. A thin film bulk acoustic wave resonator with resonance frequency around 2.7 GHz was fabricated from thus obtained AlN thin films and the insertion loss was about -5 dB. The electro-mechanical coupling coefficient was 4.0~5.8% of Mo/AlN/Mo was close to the theoretical value. Based on the resonator measurement, we can transform the characteristics into BVD equivalent circuit. The model not only provides the information of the loss term of the resonator but also can anticipate
    the performance of the filter. Based on the simulation result, we can develop thin film bulk acoustic wave filter and improves its characteristics.

    目錄 I 摘要……………….. XIV 第一章 緒論 1 1.1 研究動機 4 1.2 論文綱要 4 第二章 技術背景 4 2.1 壓電材料氮化鋁之介紹 4     2.1.1 氮化鋁的結構………………………. 4     2.1.2 氮化鋁的特性………………………. 5     2.1.3 壓電效應……………………. 5 2.2 氮化鋁薄膜的成長 6     2.2.1 物理氣相沉積……………… 7     2.2.2 化學氣相沉積………………………. 8 2.3 高頻聲波元件之介紹 8     2.3.1 高頻聲波元件的基本原理……………………… 8     2.3.2 高頻聲波元件的發展………………… 9     2.3.3 高頻聲波元件之比較………………… 11     2.3.4 SMR 結構……………… 12     2.3.5 不同壓電材料之FBAR共振器之比較……………… 12     2.3.6 不同電極之FBAR共振器之比較……………… 14     2.3.7 不同氮化鋁結晶性之FBAR共振器之比較……….15     2.3.8 不同表面平坦度影響氮化鋁結晶性之比較………..16     2.3.9 10GHz頻段之FBAR共振器……………… 17     2.3.10 壓電薄膜體聲波濾波器與表面聲波濾波器之比較 18 2.4 壓電聲波轉換之Model 20     2.4.1 聲波的基本特性……………… 20     2.4.2 One Dimensional Mason’s Model……………… 24     2.4.3 共振器頻率響應……………… 25     2.4.4 ButterworthVan Dyke Equivalent Circuit……….. 26 第三章 實驗製程及量測 29   3.1 薄膜製程簡介………………………. 29     3.1.1 鍍膜設備……………… 29     3.1.2 鍍膜步驟……………… 30   3.2 材料晶體結構分析與元件特性之量測………………… 32     3.2.1 材料晶體結構之分析(XRD)… 32     3.2.2 Rocking curve分析……………………. 33     3.2.3 材料微結構之觀察(SEM)………… 33     3.2.4 原子力顯微鏡之觀察與分析(AFM)………………… 34     3.2.5 材料細微結構之觀察(TEM)………………… 34     3.2.6 二次離子縱深成分分析(SIMS)………………… 34     3.2.7 利用MTS Nanoindenter LFM量測附著性………34     3.2.8 網路分析儀量測S參數………………… 35   3.3 高頻元件之製程………………………. 36     3.3.1 表面聲波元件的製程………………… 36     3.3.2 體聲波共振器的製程………………… 37     3.3.3 體聲波濾波器的製程………………… 47 第四章 高頻表面聲波元件 52   4.1 表面聲波元件材料之選擇………………………. 52     4.1.1 奈米微晶鑽石之拋光…………… 52     4.1.2 緩衝層材料之選擇……………. 52   4.2 優選氮化鋁於奈米微晶鑽石之材料分析………………… 55     4.2.1 以SIMS分析縱深之成分…… 58     4.2.2 優選氮化鋁於奈米微晶鑽石之結晶性分析 60     4.2.3 優選氮化鋁於奈米微晶鑽石之附著性測試 67   4.3 表面聲波元件之製作及量測………………………. 71     4.3.1 氮化鋁/矽之表面聲波元件………… 71     4.3.2 氮化鋁/奈米微晶鑽石之表面聲波元件……………74 第五章 薄膜體聲波共振器 76   5.1 在矽基板上得到優選之氮化鋁………………………. 76     5.1.1 改變氣體分壓之氮化鋁結晶性差異………… 76     5.1.2 氬氣:氮氣(Ar:N2)比例之選擇………………… 77     5.1.3 射頻功率之選擇………… 79     5.1.4 在不同基板上成長氮化鋁薄膜………………… 79   5.2 成長結晶性佳之金屬於氮化矽基板上…………………… 82     5.2.1 成長氮化鋁/鋁金屬於氮化矽基板上……… 83     5.2.2 成長氮化鋁/鈦金屬於氮化矽基板上………………89     5.2.3 成長氮化鋁/鉬金屬於氮化矽基板上………………95     5.2.4 氮化鋁/鉬,鈦金屬於氮化矽基板上之TEM分析…101     5.2.5 成長氮化鋁於金屬/氮化矽基板上之比較……..…104   5.3 體聲波元件的電性分析…………………………………...107     5.3.1 元件之Mason’s模型………… 107     5.3.2 薄膜體聲波共振元件之BVD Model……………… 108     5.3.3 薄膜體聲波共振頻率及頻率響應之模擬………… 110     5.3.4 薄膜體聲波共振元件S參數之量測………… 112     5.3.5 有效機電耦合係數(kt2)的計算………… 116     5.3.6 利用BVD model及模擬軟體探討共振器之響應...120 第六章 薄膜體聲波濾波器 124   6.1 以共振器之特性模擬濾波器之響應……………………...124     6.1.1 以共振器之特性模擬一階濾波器之響應………… 124     6.1.2 以三階共振器模擬濾波器之響應………………… 126     6.1.3 以電感效應增加濾波器之頻寬………………… 128   6.2 以面微加工製作體聲波濾波器的電性分析……………...129   6.3 以體微加工製作體聲波濾波器的電性分析……………...132   6.4 製作濾波器之未來改進方向……………………………...133 第七章 結 論 136 第八章 參考文獻 140 個人著作 144 個人簡歷 145 圖目錄 2.1.1氮化鋁Wurtzite結構之原子排列圖及原子鍵結圖 5 2.1.2 (a)順壓電性(b)逆壓電性;(i)壓縮(ii)伸張 6 2.3.1 利用p+-layer of Si當作支撐層之FBAR 10 2.3.2 Satoh利用FBAR製作出monolithic devices 10 2.3.3 Ruby發表之體聲波濾波器特性 10 2.3.4 Ruby等人發表之體聲波共振器結構 11 2.3.5 FBAR與SAW元件之示意圖 11 2.3.6 SMR(solidly mounted resonator)FBAR之結構示意圖 12 2.3.7 氮化鋁FBAR與氧化鋅FBAR之特性比較 13 2.3.8 不同電極之FBAR共振器之特性比較 14 2.3.9 不同電極之FBAR共振器之rejection比較 14 2.3.10 不同氮化鋁之半高寬之FBAR共振器之特性比較 15 2.3.11 AlN/Mo/Al.Cu/Si(111)及AlN/Mo/Al/Si(111)之TEM圖形 16 2.3.12 不同表面平坦度影響氮化鋁之優選取向比較 16 2.3.13 10GHz頻段之FBAR共振器之特性 17 2.3.14 Ceramic duplexer與FBAR duplexer尺寸比較 17 2.3.15 各種微波元件特性之比較 18 2.3.16 SAW濾波器及FBAR濾波器之功率耐受度比較 19 2.3.17 Fujitsu SAW之雙工器與Agilent FBAR之雙工器比較 19 2.3.18 SAW與FBAR之適用範圍 20 2.4.1 聲體波傳遞的基本模式 (a)縱波 (b)橫波 21 2.4.2 振動體力傳遞的等效線路 21 2.4.3 聲波在壓電材料中傳遞的等效線路 22 2.4.4 聲波在一塊材中傳遞示意圖 24 2.4.5 在無損的情況下一個共振器的BVD等效線路 27 3.1.1 濺鍍系統 30 3.2.1 Rocking curve分析示意圖 33 3.2.2 MTS Nanoindenter LFM設備示意圖 35 3.2.3 探針量測系統 35 3.2.4 探針量測方式 36 3.3.1 表面聲波元件之結構 37 3.3.2 FBAR 底電極之圖形 38 3.3.3 FBAR 蝕刻窗之圖形 39 3.3.4 底電極與蝕刻窗之圖形 39 3.3.5 壓電層的面積大小之圖形 40 3.3.6 上電極之圖形 41 3.3.7 以玻璃夾器的裝置蝕刻晶片之圖 42 3.3.8 FBAR 蝕刻窗之SEM 43 3.3.9 FBAR 橫截面之SEM 43 3.3.10 FBAR 元件完成之示意圖 43 3.3.11 蝕刻窗透光之圖形 44 3.3.12 元件完成圖 44 3.3.13 FBAR製作流程圖 45-46 3.3.14 濕蝕刻處理後之晶片之OM圖 47 3.3.15 下電極之光罩圖形 48 3.3.16 壓電層之光罩圖形 49 3.3.17 上電極之光罩圖形 49 3.3.18 tuning layer之光罩圖 50 3.3.19 etching window之光罩圖 50 3.3.20 元件完成之示意圖 51 3.3.21 體聲波濾波器之流程圖 51 4.1.1 (a)氫氣電漿(b)氬氣電漿下成長之鑽石表面SEM 52 4.1.2 拋光後之奈米微晶鑽石表面SEM 53 4.1.3 TiN/UNCD之表面及橫截面之SEM 54 4.1.4 Ti/UNCD之表面及橫截面之SEM 55 4.2.1 不同的鑽石表面成長氮化鋁之XRD及Rocking curve分析 55 4.2.2 Free standing鑽石薄膜表面成長氮化鋁之示意圖及XRD 56 4.2.3 氮化鋁成長於不同緩衝層TiN 150 nm /Ti 50nm、TiN 30 nm /Ti 50nm、Ti 50nm上之XRD 57 4.2.4 氮化鋁成長於不同緩衝層TiN 150 nm /Ti 100nm、TiN 30 nm /Ti 100nm、Ti 100nm上之XRD 57 4.2.5 以鈦金屬(50 nm)成長氮化鋁之縱深成分分析 58 4.2.6 以鈦金屬(100nm)成長氮化鋁之縱深成分分析 59 4.2.7 以TiN 30 nm/Ti 100 nm成長氮化鋁之縱深成分分析 60 4.2.8 以TiN 150 nm/Ti 100 nm成長氮化鋁之縱深成分分析 60 4.2.9 利用不同厚度鈦金屬成長氮化鋁之XRD 61 4.2.10利用不同厚度鈦金屬成長氮化鋁之Rocking curve 61 4.2.11利用50 nm鈦金屬成長氮化鋁表面之SEM 62 4.2.12利用100 nm鈦金屬成長氮化鋁表面之SEM 62 4.2.13利用不同厚度鈦金屬成長氮化鋁之XRD 63 4.2.14利用不同厚度鈦金屬成長氮化鋁之Rocking curve 63 4.2.15利用30 nm氮化鈦金屬成長氮化鋁表面之SEM 64 4.2.16利用150 nm氮化鈦金屬成長氮化鋁表面之SEM 64 4.2.17利用不同厚度氮化鈦/鈦金屬成長氮化鋁之XRD 65 4.2.18 不同厚度氮化鈦/鈦金屬成長氮化鋁之Rocking curve…....65 4.2.19 AlN/TiN 30 nm/Ti 100 nm/UNCD (a)表面及(b)橫截面之 SEM…………..…………………………………………………..66 4.2.20 AlN/TiN 150 nm/Ti 100 nm/UNCD(a)表面及(b)橫截面之 SEM………..……………………………………………………..66 4.2.21 AlN/UNCD之adhesion test及OM圖 67 4.2.22 AlN/Ti 100 nm/UNCD之adhesion test及OM圖 68 4.2.23 AlN/TiN 30nm/Ti 100nm/UNCD之adhesion test及OM圖 68 4.2.24 AlN/TiN 150nm/Ti100nm/UNCD之adhesion test及OM圖 69 4.2.25 使用緩衝層之adhesion test比較圖 69 4.2.26 量測壓電性之裝置示意圖 70 4.2.27 PFM之量測 70 4.3.1 SAW之光罩圖形 71 4.3.2 2 □m AlN/Si 之SEM 72 4.3.3 2 □m AlN/Si 之XRD 72 4.3.4 2 □m AlN/Si上量測到之S21訊號 73 4.3.5 2 □m AlN/TiN 150 nm/Ti 100nm/20 □m UNCD上量測到之S21 訊號 74 5.1.1 不同壓力下成長氮化鋁薄膜之XRD 77 5.1.2 不同壓力下成長氮化鋁薄膜表面之SEM 77 5.1.3 不同氬氣/氮氣(Ar/N2)比例下成長氮化鋁之XRD 78 5.1.4 以RBS分析各元素之圖形 78 5.1.5 不同Ar/Ar+N2比例之元素含量 78 5.1.6 不同射頻功率下成長氮化鋁之XRD 79 5.1.7 不同射頻功率下成長氮化鋁之rocking curve分析 79 5.1.8 在Sapphire、Si(111)、Si(100)下成長氮化鋁之XRD 80 5.1.9 在Sapphire、Si(111)、Si(100)上成長氮化鋁之rocking curve分析 80 5.1.10在Sapphire、Si(111)、Si(100)上成長氮化鋁之橫截面 SEM 81 5.1.11 在Sapphire、Si(111)、Si(100)上成長氮化鋁之分析 81 5.1.12 AlN/Si(111)之TEM圖形 82 5.1.13 利用其他單晶基板作為體聲波元件之結構 82 5.2.1不同壓力下成長鋁之SEM 83 5.2.2 AlN/Al(改變鍍膜壓力)/SiNx之XRD 85 5.2.3 AlN/Al(改變鍍膜壓力)/SiNx之rocking curve 85 5.2.4鋁電極(20 mtorr)上成長AlN之SEM 86 5.2.5鋁電極(10 mtorr)上成長AlN之SEM 86 5.2.6鋁電極(5 mtorr)上成長AlN之SEM 87 5.2.7鋁電極(2 mtorr)上成長AlN之SEM 87 5.2.8在鋁電極(20 mtorr、10 mtorr、5 mtorr、2 mtorr)上成 長AlN之AFM 88 5.2.9 在不同氣壓下成長鈦之SEM 90 5.2.10 AlN/Ti(改變鍍膜壓力)/SiNx之XRD 90 5.2.11 AlN/Ti(改變鍍膜壓力)/SiNx之rocking curve 91 5.2.12 鈦電極(20 mtorr)上成長AlN之SEM 91 5.2.13 鈦電極(10 mtorr)上成長AlN之SEM 92 5.2.14 鈦電極(5 mtorr)上成長AlN之SEM 92 5.2.15 鈦電極(2 mtorr)上成長AlN之SEM 93 5.2.16 在鈦電極(20 mtorr、10 mtorr、5 mtorr、2 mtorr) 上 成長AlN之AFM 94 5.2.17在不同的氣壓下成長鉬之SEM 95 5.2.18 AlN/Mo(改變鍍膜壓力)/SiNx之XRD 96 5.2.19 AlN/Mo(改變鍍膜壓力)/SiNx之rocking curve 96 5.2.20 鉬電極(20 mtorr)上成長AlN之SEM 98 5.2.21 鉬電極(10 mtorr)上成長AlN之SEM 98 5.2.22 鉬電極(5 mtorr)上成長AlN之SEM 99 5.2.23 鉬電極(2 mtorr)上成長AlN之SEM 99 5.2.24 在鉬電極(20 mtorr、10 mtorr、5 mtorr、2 mtorr) 上 成長AlN之AFM 100 5.2.25 鈦電極(2 mtorr)上成長AlN柱狀晶結構之TEM 102 5.2.26 鈦電極(2 mtorr)上成長AlN介面之TEM 102 5.2.27 texrure鉬電極(2 mtorr)之TEM 103 5.2.28 鉬電極(2 mtorr)上與AlN介面之TEM 103 5.2.29鉬電極(2 mtorr)上成長AlN之TEM 104 5.2.30 各種電極上成長氮化鋁之XRD 105 5.2.31 各種電極上成長氮化鋁之Rocking Curve 105 5.2.32 各種不同金屬上氮化鋁之平坦度 106 5.2.33 各種不同金屬上氮化鋁之AFM 106 5.3.1 1.D的Mason’s Model等效之模型 108 5.3.2 元件之頻率響應圖 109 5.3.3 元件之等效BVD線路 110 5.3.4 改變金屬層厚度其共振頻率之改變 111 5.3.5 改變支撐層厚度其共振頻率之改變 111 5.3.6 模擬不同Pattern大小之頻率響應 112 5.3.7 200-nm Ti/1-mm AlN/200-nm Ti/0.5-mm SiNx, S11參數 及S21有一致之頻率響應 113 5.3.8 200-nm Ti/1-mm AlN/200-nm Ti/0.5-mm SiNx 之S參數 量測 113 5.3.9 200-nm Mo/1-mm AlN/200-nm Mo/0.5-mm SiNx之S參數 量測 114 5.3.10 改變壓電材料的厚度量測其S參數 114 5.3.11 減低SiNx厚度為0.5 mm的聲波元件S21量測結果 115 5.3.12 乾蝕刻後聲波元件S21量測結果 115 5.3.13 模擬在不同厚度鉬電極上機電偶合係數之改變 117 5.3.14 200-nm Ti/0.5-mm AlN/200-nm TiN/200-nm Ti/0.5-mm SiNx之S參數 117 5.3.15 200-nm Ti/0.5-mm AlN/200-nm TiN/200-nm Ti/0.5-mm SiNx之不同pattern之機電偶合係數 118 5.3.16 200-nm Ti/0.5-mm AlN/200-nm Ti/0.5-mm SiNx之不同 pattern之S參數 118 5.3.17 200-nm Ti/0.5-mm AlN/200-nm Ti/0.5-mm SiNx之不同 pattern之機電偶合係數 119 5.3.18 200-nm Mo /1-mm AlN /200-nm Mo /0.5-mm SiNx 之不同 pattern之機電偶合係數 119 5.3.19 單一元件之共振訊號 121 5.3.20 加上一接地之電阻會提升其Insertion Loss 121 5.3.21 模擬使用高阻值之基板之情況 122 6.1.1 不同並聯共振器之頻率偏移得到之濾波器表現 125 6.1.2 一階串並聯之體聲波薄膜濾波器之特性 125 6.1.3 三階串聯之體聲波薄膜共振器之特性 126 6.1.4 多階串聯之體聲波薄膜共振器之特性 127 6.1.5 多階串聯之體聲波薄膜共振器之特性 127 6.1.6 模擬電感效應對濾波器之影響 128 6.2.1 未移除1 □mSiO2時量測之共振器訊號 130 6.2.2 未移除1 □mSiO2時共振器之OM圖 130 6.2.3 未移除1 □mSiO2時量測之濾波器訊號 131 6.2.4 未移除1 □mSiO2時濾波器之OM圖 131 6.3.1 以體微加工製作體聲波濾波器之訊號 132 6.3.2 以體微加工製作體聲波之濾波器訊號 132 6.4.1 元件側面蝕刻之示意圖 133 6.4.2 蝕刻SiO210小時之元件OM圖 134 6.4.3 M. Haraaw等人以Ge為犧牲層之共振器元件完成圖 135 6.4.4 Y. Kanga等人以XeF2乾蝕刻完成之共振器元件圖 135 表目錄 2.1 氮化鋁與氧化鋅之特性比較 13 2.2 不同結晶性氮化鋁之半高寬之比較圖 15 2.3電磁波與聲波傳遞方程式 22 2.4 TE及LFE並聯共振頻率及串聯共振頻率 26 3.1 製程鍍膜參數 32 4.1 AlN、Ti、TiN幾種材料鍍膜之參數 54 5.1 材料之聲波參數 110 6.1 濾波器階數與頻寬及插入損失之關係 128 6.2 串聯電感值與頻寬及插入損失之關係 129

    [1] H.P. Lobla, M. Kleea, R. Milsomb, R. Dekkerc, C. Metzmachera, W. Branda, P. Lok.”Materials for bulk acoustic wave (BAW) resonators and filters” Journal of the European Ceramic Society 21, 2633–2640 (2001).
    [2] G. A. Jeffrey and G. S. Parry, “Crystal structure of aluminum nitride” J. Chem. Phys. 23, 406-411(1953).
    [3]Q. Xia, H. Xia, “Pressure-induced rocksalt phase of aluminum nitride: A metastable structure at ambient condition“ J. Appl. Phys. 73, 8198-8200 (1993).
    [4] A. Madan, I.W. Kim, S.C. Cheng, P. Yashar, V.P. Dravid and S.A. Barnett, “Stabilization of cubic AlN in epitaxial AlN/TiN superlattices” Phys. Rev. Lett. 78, 1743-1746 (1997).
    [5] I. W. Kim, Quan Li, L. D. Marks and S.A. Barnett, “Critical thickness for transformation of epitaxially stabilized cubic AlN in superlattices” Appl. Phys. Lett. 78, 892-894 (2001).
    [6] D. Chandrasekhar, D.J. Smith, S. Strite, M. E. Lin and H. Morkoc, “Characterization of group III-nitride semiconductors by high-resolution electron microscopy“ J. Crystal Growth 152, 135-142, (1995).
    [7] R. D. Vispute, H. Wu and J. Narayan, “High quality epitaxial aluminum nitride layers on sapphire by pulsed laser deposition” Appl. Phys. Lett. 67, 1549-1551, (1995).
    [8] R. D. Vispute, J. Narayan, J.D. Budai, “High quality optoelectronic grade epitaxial AlN films on alpha-Al2O3, Si and 6H-SiC by pulsed laser deposition” Thin Solid Films 299, 94-103 (1997).
    [9] S. Ito, H. Fujioka, J. Ohta, H. Takahashi and M. Oshima, “Growth of AlN on lattice-matched MnO substrates by pulsed laser deposition” Thin Solid Films 435, 215-217 (2003).
    [10] I. Ivanov, L. Hultman, K. Järrendahl, P. Martensson, J.E. Sundgren, B. Hjorvarsson and J.E. Greene,“Growth of epitaxial AlN(0001) on Si(111) by reactive magnetron sputter deposition“, J. Appl. Phys. 78, 5721-5726 (1995).
    [11] H. Okano, N. Tanaka, Y. Takahashi, T. Tanaka, K. Shibata and S. Nakano, “Preparation of aluminum nitride thin films by reactive sputtering and their applications to GHz-band surface acoustic wave devices”, Appl. Phys. Lett. 64, 166-168 (1994).
    [12] V. Lebedev, B. Schroter, G. Kipshidze and W. Richter, “The polarity of AlN films grown on Si(111)”, Journal of Crystal Growth 207, 266-272, (1999).
    [13] A. Nakajima, Y. Furukawa, S. Koga and H. Yonezu, “Growth of high-quality A1N with low pit density on SiC substrates”, Journal of Crystal Growth 265, 351-356, (2004).
    [14] R. L. Puurunen, M. Lindblad, A. Root, and A.O.I. Krause, “Successive reactions of gaseous trimethylaluminium and ammonia on porous alumina” Physical Chemistry Physics 3, 1093-1102, (2001).
    [15] K. Wongchotigul, S. Wilson, C. Dickens, J. Griffin, X. Tang and M.G. Spencer, “Growth of aluminum nitride with superior optical and morphological properties” Silicon Carbide, III-Nitrides and Related Materials, PTS 1 and 2 Materials Science Forum 264-2, 1137-1140, (1998).
    [16] G. Y. Meng, S. Xie and D.K. Peng, “Rate-limiting process and growth kinetics of AlN thin films by microwave plasma CVD with AlBr3-NH3-N2 system” Thin Solid Films 334, 145-150 (1998).
    [17] W. Zhang , R. Vargas, T. Goto, Y. Someno and T. Hirai, “Preparation of epitaxial AlN films by electron-cyclotron-resonance plasma-assisted chemical-vapor-deposition on Ir-coated and Pt-coated Sapphire substrates”Appl. Phys. Lett. 64, 1359-1361 (1994).
    [18] K. Yasui, S. Hoshino and T. Akahane , “Epitaxial growth of AlN films on Si substrates by ECR plasma assisted MOCVD under controlled plasma conditions in afterglow region” Applied Surface Science 159–160, 462–467 (2000).
    [19] K. Nakamura and H. Shimizu, “A Lower-Order Overtone Resonator Consisting of a ZnO Layer on an Anisotropically Etched Silicon Substrate” Proc. Autumn Meeting, Acoustic Society Japan, 127-128 (1980).
    [20] K. Nakamura, H. Sasaki and H. Shimizu: 1st Symp. UltrasonicElectronics, Tokyo, “A piezoelectric Composite Resonator Consisting of a ZnO Film on an Anisotropically Etched Silicon Substrate”, Jpn. J. Appl. Phys. 20, 111.-114 (1981).
    [21] T. W. Grudkowski, J. F. Black, T. M. Reeder, D. E. Cullen and R. A. Wagner, “ Fundamental- mode VHF-UHF miniature acoustic resonators and filters on silicon” Appl. Phys. Lett. 37, 993-995 (1980).
    [22] K. M. Lakin and J. S. Wang, “UHF composite bulk wave resonators,” IEEE Ultrason. Symp., 834–837 (1980).
    [23] H. Satoh, H. Suzuki, C. Takahashi, C. Narahara and Y. Ebata, ”A 400MHz One-Chip Oscillator Using an Air-Gap Type Thin Film Resonator” IEEE Ultrason. Symp., 363-368 (1987).
    [24] R. Ruby, P. Bradley, J. D. Larson III and Y. Oshmyansky, “PCS 1900 MHz duplexers using thin film bulk acoustic resonators (FBARs)”, Electronic Letters ,35 , 794-795 (1999).
    [25] R. Ruby, P. Bradley, Y. Oshmyansky, A. Chien and J. D. Larson, III, ”Thin film Bulk wave Acoustic resonators for wireless applications” IEEE Ultrason. Symp., 813-821 (2001).
    [26] R. Ruby, Y. Desai and D. Bradbury, ”SBAR structures and method of Fabrication of SBAR. FBAR film processing techniques for the manufacturing of SBAR/BAR filters.” U.S. Patent 6060818,(2000).
    [27] W.E. Newell, "Face-Mounted Piezoelectric Resonators" Proc. IEEE 53, 575-581 (1965).
    [28] R. Aigner, ”Volume Manufacturing of BAW-Filters in a CMOS Fab” Second Int. Symp. Acoustic Wave Devices for Future Mobile Communication Systems, Chiba, 129-134 (2004).
    [29] Y. Satoh, T. Nishihara, T. Yokoyama, M. Ueda and T. Miyashita, “Development of Piezoelectric Thin Film Resonator and Its Impact on Future Wireless Communication Systems” Jpn. J. Appl. Phys. 44 5A, 2883–2894 (2005).
    [30] K. M. Lakin, J. Belsick, J. F. McDonald and K. T. McCarron,” Improved bulk wave resonator coupling coefficient for wide bandwidth filters.” IEEE Ultrasonics Symposium., 827-831 (2001).
    [31] T. Yokoyama, T. Nishihara, S. Taniguchi, M. Iwaki,and Y. Satoh,” New Electrode Material for
    Low-loss and High-Q FBAR Filters” IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference, 429-432 (2004).
    [32] William Mueller, ” A Brief Overview of FBAR Technology” www.agilent.com/view/rf.
    [33] Y. Satoh, O. Ikata, and T. Miyashita, “RF SAW Filters” International Symposium on Acoustic Wave Devices for Future Mobile Communication Systems, 125-132 (2001).
    [34] Y. Satoh, T. Nishihara, T. Yokoyama, M. Iwaki and T. Miyashita,” Development of 5 GHz FBAR filters for wireless systems” Proc. 2nd Int. Symp. Acoustic Wave Devices for Future Mobile Communication Systems, Chiba, 141-144 (2004).
    [35] M. Ueda, J. Tsutsumi, S. Inoue, Y. Iwamoto, M. Miura, T. Matsuda, O.Ikata and Y. Satoh, “High Performance SAW Antenna Duplexer using Ultra-Low-Loss Ladder Filter and DMS for 1.9GHz US PCS”: Proc. 2nd Int. Symp. Acoustic Wave Devices for Future Mobile Communication Systems, Chiba, , 263-266 (2004).
    [36] Bulk Acoustic Wave theory and Devices, Joel F. Rosenbaum.
    [37] J. D. Larson III, P. D. Bradley, S. Wartenberg, R. C. Ruby, “Modified Butterworth-Van Dyke Circuit for FBAR Resonators and Automated Measurement System”, IEEE Ultrasonics Symposium 1, 863-868 (2000).
    [38] G. Vogg, C. R. Miskys, J. A. Garrido, M. Hermann, M. Eickhoff, and M. Stutzmann, “High quality heteroepitaxial AlN films on diamond” J. Appl. Phys. 96 ,895-902 (2004).
    [39] O. Elmazria, V. Mortet, M. E. Hakiki, M. Ne1adek and P. Alnot, “High Velocity SAW Using Aluminum Nitride Film on Unpolished Nucleation Side of Free-Standing CVD Diamond” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 50, 710-715, (2003).
    [40] V. Mortet , M. Nesladek , K. Haenen , A. Morel , M. D’Olieslaeger , M. Vanecek, “Physical properties of polycrystalline aluminium nitride films deposited by magnetron sputtering” Diamond and Related Materials 13 ,1120–1124 (2004).
    [41] J.P. Jung, J. B. Lee and J.S. Park, “Experimental and theoretical investigation on the relationship between AlN properties and AlN-based FBAR characteristics.” IEEE International Frequency control symposium and PDA exhibition jointly with the 17th European frequency and time forum. 779-784 (2003).
    [42] M. Akiyama, K. Nagao, N. Ueno, H. Tateyama, T. Yamada, “Influence of metal electrodes on crystal orientation of aluminum nitride thin films.” Vacuum 74, 699-703 (2004).
    [43] C.L. Huang , K.W. Tay , L. Wu, “Aluminum nitride films deposited under various sputtering parameters on molybdenum electrodes.” Solid-State Electronics 49, 219–225 (2005).
    [44] H.C. Lee, J.Y. Park, K.H. Lee, and J. U. Bu, “Preparation of highly textured Mo and AlN films using a Ti seed layer for integrated high-Q film bulk acoustic resonators.” J. Vac. Sci. Technol. B 22, 1127-1133 (2004).
    [45] H. Matsumoto, K. Asai, N. Kobayashi, S. Nagashima, A. Isobe, N. Shibagaki and M. Hikita,
    “Influence of Underlayer Materials on Preferred Orientations of Sputter-Deposited AlN/Mo Bilayers for Film Bulk Acoustic Wave Resonators.” Jpn. J. Appl. Phys., 43, 8219-8222 (2004).
    [46] J.Y.Park, H.M.Lee,H.C.Lee,K.H.Lee, Y.J.Ko, J. H. Shin, S.H. Moon and J. U. Bu,”Comparison of Micromachined FBAR band pass filters with different structural geometry.” IEEE MTT-S Digest ,2005-2008 (2003).
    [47] L. Mang, F. Hickernell, R. Pennell and T. Hickernell “Thin-film resonator ladder filter” IEEE MTT-S Digest , 887-890 (1995).
    [48] H. H. Kim, B. K. Ju b, Y. H.Lee, S. H. Lee,J. K. Lee and S. W. Kim “Fabrication of suspended thin film resonator for application of RF bandpass filter” Microelectronics Reliability 44, 237–243 (2004).
    [49] M. Hara, J. Kuypers, T. Abe, M. Esashi “Surface micromachined AlN thin film 2 GHz resonator for CMOS integration” Sensors and Actuators A 117, 211–216 (2005).
    [50] Y.R. Kang, S.C. Kang, K.K. Paek , Y.K. Kim, S.W. Kim, B.K. Ju “Air-gap type film bulk acoustic resonator using flexible thin substrate” Sensors and Actuators A 117 ,62–70 (2005).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE