簡易檢索 / 詳目顯示

研究生: 趙 珂
Zhao, Ke
論文名稱: 多壁奈米碳管/二氧化錳/環氧樹脂混合物與碳纖維布多層複合結構的電磁屏蔽效能研究
Investigation on the Electromagnetic Interference Shielding Effectiveness of MWCNTs/MnO2/Epoxy Incorporating Carbon Fiber Cloth Multi-layered Composites
指導教授: 戴念華
Tai, Nyan-Hwa
口試委員: 嚴大任
Yen, Ta-Jen
葉孟考
Yeh, Meng-Kao
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 73
中文關鍵詞: 多壁奈米碳管二氧化錳碳纖維布多層複合結構電磁屏蔽效能
外文關鍵詞: MWCNTs, MnO2, Carbon Fiber Cloth, Multi-layered Composites, Electromagnetic Interference Shielding Effectiveness
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究設計多層複合結構,選取奈米碳管/二氧化錳/環氧樹脂複合材料作為吸收層、市售碳纖維布作為反射層,探討此複合材料之吸波特性。
    第一層為吸收層:層內的多壁奈米碳管形成的導電網絡、介電材料二氧化錳的極化現象、多樣的界面散射均大大促進了電磁波的吸收;第二層為反射層:高導電性的商用碳纖維布可以快速反射並消耗電磁波。吸收層與反射層間由於導電性差異形成阻抗不匹配,也進一步增加了電磁波的吸收。
    當電磁波入射時,先由第一層吸收大部分電磁波,再被第二層反射回吸收層,然後被二次吸收。基於這樣的多層結構設計,2.85 mm厚的電磁屏蔽材料在8.2-12.4 GHz的X頻段表現優異,總屏蔽效能約為41.24 dB,反射損耗約為13.62 dB,平均吸收率超過93%,是以吸收損耗為主的吸波材料。因此可廣泛應用於商業、軍事和科學領域。


    In this work, layered hybrid composites are fabricated for the preparation of highly-efficient wave-absorbing material. Multi-walled carbon nanotubes/manganese dioxide/epoxy (MWCNTs/MnO2/EP) composites are selected as an absorption layer while a commercially available carbon fiber cloth is used as a reflection layer.
    The first layer is designed as the absorption layer, where conductive network formed by MWCNTs and dielectric polarization caused by MnO2, combining with the interfacial scattering greatly promote the absorption. The second layer is the reflection layer, in which commercial carbon fiber cloth could reflect most of the electromagnetic (EM) waves transmitted from the absorption layer. The impedance mismatch between these two layers due to the difference in conductivity further increase the absorption.
    When EM waves impinge on such a multi-layered structure, the first layer could absorb most of them, and the remaining EM waves would be reflected back by the second layer and be absorbed again by the first layer. Based on the design, the multi-layered composites show high EMI shielding effectiveness of ~41.24 dB while the reflection loss is measured to be ~13.62 dB in X-band (8.2-12.4 GHz) with a thickness of 2.85 mm. The layered composites could absorb 93% of the impinging EM waves, thus, provides an absorption-dominant EMI shielding. It is concluded that the as-prepared composites are suitable for the applications in commercial, military and scientific fields.

    摘 要 I Abstract II 致 謝 III 表格索引 VIII 插圖索引 IX 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 第二章 文獻回顧 3 2.1 電磁波的危害 3 2.1.1 電磁干擾 3 2.1.2 電磁信息洩漏 4 2.1.3 電磁環境污染 4 2.2 電磁屏蔽機理 5 2.2.1 反射損耗 8 2.2.2 吸收損耗 9 2.2.2.1 導電損耗 10 2.2.2.2 介電損耗 11 2.2.2.3 磁損耗 11 2.2.3 多重反射損耗 12 2.3 電磁屏蔽材料與結構設計 12 2.3.1 金屬及合金型 12 2.3.2 表層導電型 13 2.3.2.1 導電塗料 13 2.3.2.2 金屬敷層 14 2.3.3 多孔型 14 2.3.3.1 金屬網 14 2.3.3.2 波導管 15 2.3.3.3 發泡金屬 15 2.3.4 填充複合型 15 2.3.4.1 粉末填充型 15 2.3.4.2 纖維填充型 16 2.3.5 材料結構設計 16 2.3.5.1 三維多孔泡沫結構 17 2.3.5.2 多層結構 17 2.3.5.3 核殼結構 18 2.4 奈米碳管簡介 19 2.5 二氧化錳簡介 20 第三章 實驗方法 33 3.1 實驗藥品 33 3.2 實驗儀器 33 3.2.1 電子分析天平 33 3.2.2 磁力加熱攪拌機 33 3.2.3 高速離心機 33 3.2.4 烘箱 34 3.2.5 三軸滾輪研磨機 34 3.2.6 超聲波振盪機 34 3.2.7 熱壓機 34 3.2.8 拉曼光譜儀 35 3.2.9 場發射掃描式電子顯微鏡及能譜儀 35 3.2.10 X射線衍射分析儀 35 3.2.11 四點探針 36 3.2.12 向量網絡分析儀 37 3.3 市售碳纖維布的純化處理 38 3.4 二氧化錳的製備 38 3.5 奈米碳管/二氧化錳/環氧樹脂複合材料的製備 38 第四章 實驗結果與討論 43 4.1 市售碳纖維布 43 4.1.1 碳纖維布的分析與表徵 43 4.1.2 碳纖維布的電磁屏蔽效能 44 4.2 CNT/MnO2/EP複合材料 44 4.2.1 CNT/MnO2/EP複合材料的分析與表徵 44 4.2.2 CNT/MnO2/EP複合材料的電學性能 46 4.2.3 CNT/MnO2/EP複合材料的電磁屏蔽效能 48 4.2.3.1 MWCNTs含量的影響 48 4.2.3.2 MnO2含量的影響 49 4.3 多層結構設計 49 4.3.1 多層結構的電磁屏蔽效能 50 4.3.2 樣品厚度的影響 51 4.3.3 多層結構屏蔽機理分析 53 第五章 結論 65 參考文獻 66

    1. 王睿. 連續碳纖維表面金屬化及其複合材料電磁屏蔽性能研究[D]. 天津大學, 2012.
    2. 楊鋒. 電沉積鐵鎳合金製備及其電磁屏蔽性能研究[D]. 鋼鐵研究總院, 2012.
    3. 張林昌. 電磁干擾的危害[J]. 安全與電磁相容, 2001, (1):2-5.
    4. 黃曉莉. 泡沫Fe-Ni電磁屏蔽材料的設計與屏蔽機理研究[D]. 哈爾濱工業大學, 2009.
    5. 韓冰. 輕質聚醚醚酮電磁屏蔽材料的製備及性能研究[D]. 吉林大學, 2017.
    6. 劉順華. 電磁波屏蔽及吸波材料[M]. 化學工業出版社, 2014.
    7. 劉志華, 時麗冉. 電磁輻射對人類健康的影響[J]. 生物學通報, 2006, 41(3):30-31.
    8. 王一龍. 表面包銀(中空)核殼複合粒子及其電磁屏蔽材料的研究[D]. 武漢理工大學, 2010.
    9. 李明曜. 多壁奈米碳管膜/[多壁奈米碳管+釹鐵硼磁鐵/環氧樹脂]多層複合材料之製備及其電磁波屏蔽性質分析[D]. 清華大學, 2018.
    10. Cheng D K. Field and wave electromagnetics[M]. Addison-Wesley Publishing Company, 1983.
    11. Paul C R. Introduction to electromagnetic compatibility (EMC)[M]. John Wiley & Sons Inc, 2006.
    12. Vinoy K J, Jha R M. Radar absorbing materials: from theory to design and characterization[M]. Boston: Kluwer academic publishers, 1996.
    13. Ulaby F T. Fundamentals of applied electromagnetics[M]. 科學出版社, 2002.
    14. 單燕飛. 碳纖維/鎳粉/聚丙烯電磁屏蔽複合材料的製備及其性能研究[D]. 華南理工大學, 2012.
    15. Song W L, Cao M S, Lu M M, et al. Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding[J]. Carbon, 2014, 66(1):67-76.
    16. Chen L F, Ong C K, Neo C P, et al. Microwave electronics: measurement and materials characterization[M]. John Wiley, 2004.
    17. Cheng D K. Field and wave electromagnetics[M]. Addison-Wesley Publishing Company, 1983:198-219.
    18. 趙靈智, 胡社軍, 何琴玉, 等. 電磁屏蔽材料的屏蔽原理與研究現狀[J]. 包裝工程, 2006, 27(2):1-4.
    19. 徐銘. 電磁屏蔽用吸收反射一體化複合材料的研究[D]. 中國建築材料科學研究總院, 2011.
    20. 孫麗麗. 新型化學鍍法制備木質電磁屏蔽材料的研究[D]. 東北林業大學, 2013.
    21. Liu S H, Guo H J, Duan Y P, et al. Research on electromagnetic shielding performance of carbon black/ABS/metal wire mesh composite[J]. Journal of Materials Engineering, 2004, (9):27-32.
    22. Laney O. Analysis and application of transmission line conductors[D]. San JosÈ State University, 2013.
    23. Callister W D J. Materials science and engineering: An introduction, 6th Edition[M]. Elsevier Sequoia, 1966:227-246.
    24. Chen T, Deng F, Zhu J, et al. Hexagonal and cubic Ni nanocrystals grown on graphene: phase-controlled synthesis, characterization and their enhanced microwave absorption properties[J]. Journal of Materials Chemistry, 2012, 22(30):15190-15197.
    25. Che R C, Peng L, Duan X F, et al. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes[J]. Advanced Materials, 2004, 16(5):401-405.
    26. 馬向雨. 鐵基磁屏蔽梯度複合結構材料製備與屏蔽性能研究[D]. 哈爾濱工業大學, 2015.
    27. 陳若凡. 基於石墨烯海綿製備的複合材料及薄膜電磁屏蔽性能研究[D]. 哈爾濱工業大學, 2017.
    28. 刘琳, 张东. 电磁屏蔽材料的研究进展[J]. 功能材料, 2015, 46(3):3016-3022.
    29. Xuan T P, Yang G Z, Yang L L, et al. Study on electromagnetic shielding effectiveness of Ni-P-La alloy coatings[J]. Journal of Rare Earths, 2006, 24(s1):389-392.
    30. 光明. 電磁屏蔽用的非晶態材料[J]. 金屬功能材料, 1997, (6):280-281.
    31. 管登高, 黃婉霞, 蔣渝, 等. 鎳基電磁波屏蔽複合塗料製備及在EMC中的工程應用[J]. 電子元件與材料, 2004, 23(2):41-43.
    32. 劉際偉, 高曉敏. 導電石墨/丙烯酸系電磁屏蔽塗料的研製[J]. 塗料工業, 1998, (10):5-7.
    33. 徐峰. 無機塗料與塗裝技術[M]. 化學工業出版社材料科學與工程出版中心, 2002.
    34. 丁世敬, 趙躍智, 葛德彪. 電磁屏蔽材料研究進展[J]. 材料導報, 2008, 22(4):30-33.
    35. 黃福祥, 金吉琰, 範嗣元, 等. 電磁屏蔽材料[J]. 材料導報, 1997, (3):18-21.
    36. Xiang P, Cheng H F, Mo L E, et al. Electromagnetic shielding effectiveness of open-cell aluminum foam[J]. Metallic Functional Materials, 2008, 15(1):12-15.
    37. 郑志锋, 蒋剑春, 戴伟娣, 等. 碳系电磁屏蔽材料的研究进展[J]. 材料导报, 2009, 23(17):23-26.
    38. Chen C S, Chen W R, Chen S C, et al. Optimum injection molding processing condition on EMI shielding effectiveness of stainless steel fiber filled polycarbonate composite[J]. International Communications in Heat & Mass Transfer, 2008, 35(6):744-749.
    39. Renee M B, Joseph M M, Robert C W. Short shaped copper fibers in all epoxy matrix: Their role in a multifunctional composite[J]. Composites Science and Technology, 2006, 66(3-4):522-530.
    40. Lee C Y, Lee D E, Jeong C K, et al. Electromagnetic interference shielding by using conductive polypyrrole and metal compound coated on fabrics[J]. Polymers for Advanced Technologies, 2002, 13(8):577-583.
    41. Shi Z, Wang X, Ding Z. The study of electroless deposition of nickel on graphite fibers[J]. Applied Surface Science, 1999, 140(1-2):106-110.
    42. 李星華. 聚合物基功能奈米複合材料的製備及導電熱與電磁屏蔽性能的研究[D]. 北京化工大學, 2017.
    43. Ling J, Zhai W, Feng W, et al. Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding.[J]. Applied Materials & Interfaces, 2013, 5(7):2677.
    44. Zhao H, Hou L, Bi S, et al. Enhanced X-band electromagnetic interference shielding performance of layer-structured fabric-supported polyaniline/cobalt-nickel coatings.[J]. Acs Appl Mater Interfaces, 2017, 9(38):33059-33070.
    45. 陳宇. 碳奈米材料填充環氧樹脂複合材料的製備及其電磁屏蔽和力學性能研究[D]. 北京化工大學, 2016.
    46. Ding D, Xu P, Qiang R, et al. Rational design of core-shell Co@C microspheres for high-performance microwave absorption[J]. Carbon, 2017, 111:722-732.
    47. Qiao M, Lei X, Ma Y, et al. Dependency of tunable microwave absorption performance on morphology-controlled hierarchical shells for core-shell Fe3O4@MnO2 composite microspheres[J]. Chemical Engineering Journal, 2016, 304:552-562.
    48. Iijima S. Helical Microtubules of Graphitic Carbon[J]. Nature, 1991, 354:56-58
    49. Saito R, Fujita M, Dresselhaus G, et al. Electronic structure of chiral graphene tubules[J]. Applied Physics Letters, 1992, 60(18):2204-2206.
    50. Tai N H, Chen H M, Chen Y J, et al. Optimization of processing parameters of the chemical vapor deposition process for synthesizing high-quality single-walled carbon nanotube fluff and roving[J]. Composites Science & Technology, 2012, 72(15):1855-1862.
    51. Odom T W, Huang J L, Philip Kim A, et al. Structure and electronic properties of carbon nanotubes[J]. Journal of Physical Chemistry B, 2000, 104(13):2794-2809.
    52. Hone J, Llaguno M C, Biercuk M J, et al. Thermal properties of carbon nanotubes and nanotube-based materials[J]. Applied Physics A, 2002, 74(3):339-343.
    53. Baughman R H, Zakhidov A A, Heer W A D. Carbon nanotubes: The route toward applications[J]. Science, 2002, 297(5582):787-792.
    54. Chang T H, Hsieh P Y, Kunuku S, et al. High Stability Electron Field Emitters Synthesized via the Combination of Carbon Nanotubes and N2-plasma Grown Ultrananocrystalline Diamond Films[J]. ACS Applied Materials and Interfaces, 2015, 7(49):27526-27538.
    55. Thomassin J M, Jérôme C, Pardoen T, et al. Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials[J]. Materials Science & Engineering R, 2013, 74(7):211-232.
    56. Thackeray M M. Manganese oxides for lithium batteries[J]. Progress in Solid State Chemistry, 1997, 25(1-2):1-71.
    57. Thierry B, Mathieu T, Romain D, et al. Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors[J]. Journal of The Electrochemical Society, 2006, 153(12):A2171-A2180.
    58. Bora P J, Azeem I, Vinoy K J, et al. Morphology controllable microwave absorption property of polyvinylbutyral (PVB)/MnO2 nanocomposites[J]. Composites Part B, 2018, 132:188-196.
    59. Guan H, Gang C, Zhang S, et al. Microwave absorption characteristics of manganese dioxide with different crystalline phase and nanostructures[J]. Materials Chemistry & Physics, 2010, 124(1):639-645.
    60. Eswaraiah V, Sankaranarayanan V, Ramaprabhu S. Inorganic nanotubes reinforced polyvinylidene fluoride composites as low-cost electromagnetic interference shielding materials[J]. Nanoscale Research Letters, 2011, 6(1):137.1-137.11.
    61. Bora P J, Vinoy K J, Ramamurthy P C, et al. Electromagnetic interference shielding efficiency of MnO2 nanorod doped polyaniline film[J]. Materials Research Express, 2017, 4(2):025013.1-025013.10.
    62. Gupta T K, Singh B P, Singh V N, et al. MnO2 decorated graphene nanoribbons with superior permittivity and excellent microwave shielding properties[J]. Journal of Materials Chemistry A, 2014, 2(12):4256-4263.
    63. Wang H, Zhang Z, Dong C, et al. Carbon spheres@MnO2 core-shell nanocomposites with enhanced dielectric properties for electromagnetic shielding[J]. Scientific Reports, 2017, 7(1):15841.1-15841.11.
    64. Wang Y, Han B Q, Chen N, et al. Enhanced microwave absorption properties of MnO2 hollow microspheres microspheres consisted of MnO2 nanoribbons synthesized by a facile hydrothermal method[J]. Journal of Alloys and Compounds, 2016, 616:224-230.
    65. Agarwal P R, Kumar R, Kumari S, et al. Three-dimensional and highly ordered porous carbon/MnO2 composite foam for excellent electromagnetic interference shielding efficiency[J]. Rsc Advances, 2016, 6(103): 100713-100722.
    66. Guan H, Xie J, Chen G, et al. Facile synthesis of α-MnO2 nanorods at low temperature and their microwave absorption properties[J]. Materials Chemistry & Physics, 2014, 143(3):1061-1068.
    67. NAPSON CORPORATION. 技術紹介と資料ダウンロード〜電気抵抗測定の原理〜[N/OL]. https://www.napson.co.jp/technique/, 2018/10/10.
    68. Nicolson A M, Ross G F. Measurement of the intrinsic properties of materials by time-domain techniques[J]. IEEE Trans on Instrumentation & Measurement, 1970, 19(4):377-382.
    69. 顧紅星, 王浩靜, 張淑斌, 等. HKT800碳纖維微觀結構與性能[J]. 材料科學與工藝, 2016, 24(3):45-49.
    70. Wei J Q, Jiang B, Zhang X, et al. Raman study on double-walled carbon nanotubes[J]. Chemical Physics Letters, 2003, 376(5):753-757.
    71. 吳晗瑄, 熊雄, 韋韌韜. 奈米SiO2對酚醛環氧樹脂改性研究[J]. 熱固性樹脂, 2010, 25(4):17-20.
    72. 崔明君, 任思明, 張廣安, 等. 六方氮化硼摻雜水性環氧樹脂耐腐蝕性能的研究[J]. 中國腐蝕與防護學報, 2016, 36(6):566-572.
    73. Huang X, Zhang J, Lai M, et al. Preparation and microwave absorption mechanisms of the NiZn ferrite nanofibers[J]. Journal of Alloys & Compounds, 2015, 627:367-373.

    QR CODE