簡易檢索 / 詳目顯示

研究生: 吳威鼎
Wei-Ding Wu
論文名稱: 利用離子化金屬電漿源系統於SiO2/Si基材上沈積銅薄膜之研究
Deposition of Cu thin film on SiO2/Si substrate by ionized metal plasma system
指導教授: 黃嘉宏
Dr. Jia-Hong Huang
柳克強
Keh-Chyang Leou
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2002
畢業學年度: 90
語文別: 英文
論文頁數: 98
中文關鍵詞: 離子化金屬電漿織構堆積因子交互擴散距離優選方向
外文關鍵詞: ionized meta plasma, Texture, Packing factor, inter-diffusion distance, preferred orientation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本論文研究利用離子化金屬電漿源系統將銅離子濺鍍於6000 Å SiO2/ n-type Si與400 Å TaN/ 5000 Å SiO2/ n-type Si與電漿狀態之間的關係。蘭摩爾探針被使用來量測電漿密度、電漿電位、電子溫度來確定電漿狀態。薄膜特性分析上;首先,使用FEG-SEM來觀察銅薄膜厚度與截面結構;其次,使用AFM量測表面粗糙度與表面結構;再者,XRD決定銅薄膜晶體結構,而薄膜織構與晶粒大小則由繞射結果來決定;GIXRD則被使用來決定銅薄膜的晶格參數;銅薄膜堆積因子可由RBS的結果計算而得;成分縱深分佈則由SIMS量測,銅元素與矽元素間的交互擴散距離可由二次離子質譜分析的結果中估計而得;最後,銅薄膜電阻率則由四點探針量測計算得到。總和傳遞能量密度被估計來解釋晶粒大小、交互擴散距離、與氮化鉭擴散障礙層的表現。從這估計中發現中性原子與離子濺射時所獲得動能,決定總和傳遞能量密度。對兩種不同基材而言,銅薄膜優選方向隨著總和傳遞能量與薄膜厚度的增加,由(111)方向轉為(200)方向。隨著總和傳遞能量密度的增加,晶粒尺度與鍍著於6000 Å SiO2/ n-type Si基材上銅、矽間的交互擴散距離都會增加。總和傳遞能量密度的增加驅使銅原子穿透氮化鉭進入矽基材,在氬氣氣壓低於7 mTorr以下,即使是在基材溫度僅只有25℃。


    Abstract
    This research investigated the relationship between the plasma state and the properties of Cu thin films deposited on 6000 Å SiO2/ n-type Si and 400 Å TaN/ 5000 Å SiO2/ n-type Si by ionized metal plasma system (IMP). The Langmuir probe is used to determine the plasma density, plasma potential, electron temperature for characterizing the plasma state. Field emission gun scanning electron microscopy (FEG-SEM) was used to observe the cross-sectional microstructure and determine the film thickness. The roughness and surface morphology of copper thin film was measured from the image of atomic force microscopy (AFM). The crystal structure of copper thin film was identified by X-ray diffraction (XRD). The texture and grain size were determined from the XRD results. Glancing incident X-ray diffraction (GIXRD) was used to determine the lattice parameter of copper thin films. The packing factor of the Cu films was determined by RBS. The composition depth profiles were measured by secondary ion mass spectroscopy (SIMS) and the inter-diffusion distance between Cu and Si was also estimated. The resistivity was measured by a four-point probe. The total delivered energy density was estimated to explain grain size, inter-diffusion distance, and the performance of TaN diffusion barrier. It is found that the sputtered energy of the neutrals or ions dominates the total delivered energy from the estimation. The preferred orientation changed from Cu (111) to Cu (200) with the increase of the total delivered energy density and the thickness of Cu thin films for both substrates. As the total delivered energy density increases, grain size and inter-diffusion distance between Si and Cu of Cu thin films deposited on 6000 Å SiO2/ n-type Si increases. The increase of the total energy density facilitated copper atoms to penetrate TaN diffusion barrier into Si base at Ar pressure lower than 7 mTorr even though the substrate temperature is only 25 ℃.

    Contents Abstract………………………………………………………………... I 摘要…………………………………………………………………… II 誌謝…………………………………………………………………… III Chapter I. Introduction ……………………………………………….. 1 Chapter II. Literature Review ……………………………………….... 4 2.1 Ionized Metal Plasma (IMP) Sputtering Deposition System.. 4 2.1.1 Operational Pressure…………………………………… 5 2.1.2 Magnetron power………………………………………. 6 2.1.3 R.F. power…………………………………….………... 7 2.2 Plasma Diagnostic………………………………………….. 8 2.2.1 Optical Emission Spectroscopy………………………... 8 2.2.2 Langmuir Probe………………………………………... 9 2.3 The effects of low-energy ions on the property of deposited films……………………………………………… 11 2.3.1 Texture (preferred orientation)………………………… 12 2.3.2 Grain size (column diameter)………………………….. 14 2.3.3 Lattice damage (lattice distortion or lattice defects)…... 15 2.4.The physical properties of Copper………………………….. 17 Chapter III. Experimental Detials ………………………………….…. 26 3.1 Experimental Design and Experiment Procedure…………... 26 3.2 Preparation of Substrate Material and Coating Process……. 28 3.3 Structure Determination………………………….………… 31 3.3.1 X-ray diffraction (XRD)…………………….………... 31 3.3.2 Scanning Probe Microscopy (SPM)…………………… 32 3.3.3 Field Emission Scanning Electron Microscopy ( FEG-SEM )…………………………………………….. 32 3.4 Measurement of Composition……………………………… 32 3.4.1 Rutherford Backscattering Spectrometry( RBS )……… 32 3.4.2 Secondary ion mass spectroscopy (SIMS)…………….. 33 3.5 Properties Measurements…………………………………… 33 3.5.1 Resistivity……………………………………………… 33 Chapter IV. Results …………………………………………………. 41 4.1 Structure…………………………………………….………. 41 4.1.1 X-Ray Diffraction……………………………………… 41 4.1.1.1 θ/2θ XRD……………………………………… 41 4.1.1.2 GIXRD………………………………………….…. 43 4.1.2 Microstructure…………………………………………. 43 4.1.2.1 AFM……………………………………………….. 43 4.1.2.2 SEM……………………………………………….. 44 4.2 Composition………………………………………………… 46 4.2.1 RBS…………………………………………………….. 46 4.2.2 SIMS…………………………………………………… 48 4.3 Resistivity……………………………………………….….. 49 Chapter V. Discussion…………………………………………….…… 82 5.1 Total Delivered Energy………………….………………….. 82 5.2 Texture……………………………………………………… 85 5.3 Thickness and Grain Size…………………………………... 86 5.4 Performance of TaN Diffusion Barrier……………………... 86 Chapter VI. Conclusion……………………………………………….. 94 Chapter VII. Reference………………………………………………... 95

    Chapter VII. Reference
    1. Y. Tanaka, Z. Xu, P. Gopalraja, J. Forster, G. Yao, H. Zhang, J. Nulman, F. Chen, Vacuum, Volume 51, number 4, 1998, p.p. 729~733.
    2. Daniel G. Coronell, Arthur F. Voter, David E. Hansen, Chun-Li Liu, Xiang-Yang Liu, and Joel D. Kress, Appl. Phys. Lett., Vol. 73, No. 26, 28 December 1998, p.p.3860~3862
    3. Michael J. Grapperhaus, Zoran Krivokapic, Mark J. Kushner, J. Appl. Phys. 83(1), 1 January 1998, p.p. 35~43
    4. Peter F. Cheng, S.M. Rossnagel, David N. Ruzic, J. Vac. Sci. Technol. B 13(2), Mar/Apr 1995, p.p. 203~208
    5. Changsup Ryu, Kee-Won Kwin, Alvin L., S. Loke, Haebum Lee, student member, IEEE; Valery M. Dubin, Rahim A. Kavari, Gary W. Ray, S. Simon Wong, Fellow, IEEE; IEEE TRANSACTIONS ON ELECTRON DEVICES, Vol. 46, No. 6, June 1999, p.p. 1113~1120
    6. R. L. Rhoades, S. M. Gorbatkin, J. Appl. Phys., 80 (5), 1 September 1996, p.p.2605~2613
    7. Y.M. Kim, I. Petrov, J.E. Greene, S.M. Rossnagel, J. Vac. Sci. Technol. A 14(2), Mar/Apr 1996, p.p. 346~351
    8. Y.M. Kim, I. Petrov, H. Ito, J.E. Greene, J. Vac. Sci. Technol. A 13(6), Nov/Dec 1995, p.p. 2836~2842
    9. Munir D. Naeem, Stephen M. Rossnagel, Krishna Rajan, J. Vac. Sci. Technol. B 13(2), Mar/Apr 1995, p.p. 209~213
    10. S. M. Rossnagel, J. Hopwood, Appl. Phys. Lett., Vol. 63(24), 13 December 1993, p.p.3285~p.p.3287.
    11. W. Wang, J. Foster, A. E. Wendt, J. H. Booske, T. Onuoha, P.W. Sandstrom, H. Liu, S.S. Gearhart, N. Hershkowitz, J. Appl. Phys., Vol. 71, No. 12, 22 September 1997, p.p.1622~1624.
    12. W. Wang, J. Foster, T. Snodgrass, A. E. Wendt, and J. H. Booske, J. Appl. Phys., Vol. 85, No. 11, 1 June 1999, p.p.7556~7561
    13. S.W. Hwang, Y.J. Lee, H.R. Han, J.B. Yoo, G.Y. Yeom, J. Vac. Sci. Technol. A 17(4), Jul/Aug 1999, p.p. 1211~1216
    14. M. Dickson, F. Qian, J. Hopwood, J. Vac. Sci. Technol. A 15(2), Mar/Apr 1997, p.p. 340~344
    15. Mitsuharu Konuma, “Film Deposition by Plasma Techniques”, 4.2.1 Langmuir single probe, p.p. 92~95, Springer-Verlag, 1992.
    16. J.D. Swift and M.J.R. Schwar, “Electrical Probes for Plasma Diagnostics”, chap. 1 The electrical probe method, American Elsevier, 1969.
    17. M.C. Shih, Master Thesis “Design of pulse-mode ionized metal plasma source and measurement of the plasma properties”, 2001, p.p. 36~41, National TsingHua University.
    18. C.Y. Lee, proposals (untitled), p.p. 33~41
    19. F. Adibi, I. Petrov, J.E. Greene, L. Hultman, J.-E. Sundgren, J. Appl. Phys. 73 (12), 15 June 1993, p.p. 8580~8589
    20. L. Hultman, J.-E. Sundgren, J.E. Greene, D.B. Bergstrom, I. Petrov, J. Appl. Phys. 78 (9), 1 November 1995, p.p. 5395~5403
    21. Petrov, F. Adibi, J.E. Greene, L. Hultman, J.-E. Sundgren, Appl. Phys. Lett. 63 (1), 5, July 1993, p.p. 36~38
    22. L. Hultman, G. Hakansson, U. Wahlstrom, J.-E. Sundgren, I. Petrov, F. Adibi, J.E. Greene, Thin solid films, 205, 1991, p.p. 153~164
    23. G. Hakansson, J.-E. Sundgren, D. Mcintyre, J.E. Greene, W.-D. Wunz, Thin solid films, 153, 1987, p.p. 55~65
    24. I. Petrov, L. Hultman, U. Helmersson, J.-E. Sundgren, J.E. Greene, Thin solid films, 169, 1989, p.p. 299~314
    25. H. Jiang, K. Tao, H. Li, Thin solid films, 258, 1995, p.p. 51~55
    26. C.H. Ma, J.-H. Huang, Haydn Chen, Surf. Coat. technol., 133-134, 2000, p.p. 289~294
    27. Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Surf. Coat. technol., 140, 2001, p.p. 206~214
    28. J.-H. Huang, C.-H. Lin, Haydn Chen, Mater. Chem. Phys., 59, 1999, p.p. 49~56
    29. John S. Colligon, J. Vac. Sci. Technol. A13 (3), May/Jun 1995, p.p. 1649~1657
    30. W. Ensinger, Nuclear Instruments and Methods in Physics Research B 127/128, 1997, p.p. 796~808
    31. D. Dobrev, Thin solid films, 92, 1982, p.p. 41~53
    32. J.E. Greene, “chapter 9, low-energy ion/surface interactions during crystal growth from the vapor phase: effects on nucleation and growth, defect creation and annihilation, microstructure evolution, and synthesis of metastable phases.”, Handbook of Crystal Growth, Vol. 1, edited by D.T.J. Hurle, Elsevier Science, 1993.
    33. J.H. Je, D.Y. Noh, H.K. Kim, K.S. Liang, J. Appl. Phys., 81(9), 1 May 1997, p.p. 6126~6133
    34. http://www.matweb.com/SpecificMaterial.asp?bassnum=MC101A&p=1
    35. R.W. Hertzberg, “Deformation And Fracture Mechanics Of Engineering Materials”, fourth edition, p.p. 14.
    36. R.A. Powell, S.M. Rossnagel, “Thin Films”, ‘PVD for Microelectronics: Sputter Deposition Applied to Semiconductor Manufacturing’, volume 26, p.p. 89, published by Academic Press in 1999.
    37. M. Ohring, “The Materials Science of Thin Films”, one edition, p.p. 51-53, Academic Press, San Diego (1992).
    38. ‘Simulated Energy Distribution of Copper Atoms Sputtered by Argon Ions and Copper Ions’, Hsiang-Jung Lee (unpublished) in 2001.
    39. D.B. Hayden, D.R. Juliano, K.M. Green, D.N. Ruzic, C.A. Weiss, K.A. Ashtiani, T.J. Licata, “Characterization of Magnetron-Sputtered Partially Ionized Aluminum Deposition”, J. Vac. Sci. Technol. A16(2), Mar/Apr 1998, p.p. 624-627.
    40. D.A. Porter and K.E. Easterling, “Phase Transformations in Metals and Alloys”, second edition, p.p. 130 to 139, 1992, published by Chapman & Hall.
    41. J. Pelleg, L.Z. Zevin and S. Lungo, Thin Solid Films, 197, 1991, p.p. 117~128.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE