簡易檢索 / 詳目顯示

研究生: 何孟芬
Ho, Meng-Fen
論文名稱: 以視覺為基礎的人體動作分析
Vision-Based Human Motion Analysis
指導教授: 黃仲陵
Huang, Chung-Lin
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 79
中文關鍵詞: 人體動作分析手部動作分析人物肢體動作分析步伐姿態辨識系統
外文關鍵詞: Human Motion Analysis, Hand Motion Analysis, Human Body Motion Analysis, Human Gait Recognition
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文主要討論以視覺為基礎的人體動作分析,其中包含以模型為主的手部與走路的人物肢體動作分析,以及以外觀為主的人物步伐姿態識別。首先在多重視野下利用三維手部模型追蹤手腕的轉動與手指彎折的動作,並提出改良式的粒子濾波器-可分離狀態粒子濾波器來解決高維度的難題。透過整合多重視野下擷取出的多個特徵,提出的動作追蹤系統可以有效擷取手部動作參數並解決遮蔽的問題。

    第二個系統為可追蹤走路的人物肢體動作的系統。首先建構符合結構與運動學的三維人體模型,使用輸入影像中人體的形狀與彩色直方圖作為觀測。我們的系統利用事先訓練的關節角度空間相關性與時間約束改良了傳統的退火式粒子濾波器的效果,特別是在人體走路當中肢體發生遮蔽的情況時,改良效果更明顯。

    另外我們提出一個以外觀為主的步伐姿態辨識系統,擷取動態與靜態資訊來進行人物步行路徑和身分的識別。將這兩種特徵轉換至低維度空間以便進行人物識別。為了解決訓練影片與測試影片中,人物走路速度可能不同的問題,我們提出了一個混合人物識別演算法來選定最有效的特徵。每當測試特徵向量進來時,利用最鄰近分類法則進行路徑確認與人物識別。本系統利用CASIA步伐姿態資料庫進行評估,實驗結果證明的確可獲得極高的辨識率。


    This thesis will discuss the vision-based human motion analysis. The research field contains the model-based hand and walking human body motion analysis, and the appearance-based human gait recognition. A 3-D hand model is developed to track the rotating hand with finger movements in multi-view. To solve the difficulty of high dimensionality, a new modified version of particle filter - separable state based particle filtering (SSBPF) is proposed. Then, by integrating different features in different view angles, the proposed motion tracking system can capture the hand motion parameter effectively and solve the self-occlusion problem of the finger motion.

    We also propose a system to track the walking body parameters in the videos from different perspectives. A 3D human model with structural and kinematic constraints is constructed. The shape and color histogram of the image is obtained as the observation. Our system improves the traditional annealed particle filter (APF) with the pre-trained joint angle spatial correlation and the temporal constraint, especially when self-occlusion occurs.

    A gait analysis method is also developed to extract the dynamic and static information from the input video for walking path determination and human identification. The extracted dynamic and static feature is then transformed into lower dimensional embedding space. A hybrid human ID recognition based on the walking velocity of human object is proposed, which can select the more effective feature. Given a test feature vector, the nearest neighbor classifier is applied for walking paths determination and human identification. The proposed algorithm is evaluated on the CASIA gait database, and the experimental results demonstrate a highly acceptable recognition rate.

    1. Introduction 1.1 Categories of Human Motion Analysis 1.2 Related Works 1.3 System Overview 1.4 Thesis Organization 2. Tracking with Particle Filter 2.1 Separable State Based Particle Filter 2.2 Annealed Particle Filter 3. Model-Based Hand Motion Analysis 3.1 Construction of 3-D Hand Model 3.2 Constraints of 3-D Hand Model 3.2.1 Structural Constraint 3.2.2 Kinematics Constraint 3.3 Feature Generation from Multiple Cameras 3.4 Hand Tracking with Multiple Features Fusion 3.4.1 Estimating the Wrist Rotation Angles 3.4.2 Hand Tracking with SSBPF 3.4.3 Observation Model 3.4.4 Finger Occlusion 3.5 Experimental Results 3.5.1 Estimation of Hand Wrist Rotation 3.5.2 Comparison between Particle Filter and SSBPF 3.5.3 Comparison with the Ground Truth 3.6 Summary 4. Model-Based Human Body Motion Analysis 4.1 Construction of 3-D Human Model 4.2 The Constraint Model 4.2.1 Structural constraint 4.2.2 Kinematics constraint 4.2.3 Temporal Constraint 4.3 Walking Human Body Tracking 4.3.1 The Object Appearance Model 4.3.2 The Joint Angle Spatial Correlation 4.3.3 The Motion Parameter Estimation 4.3.4 The motion Parameter Estimation of Occluded Parts 4.3.5 The Spatio-Temporal-Constrained Estimation 4.4 Experimental Results 4.5 Summary 5. Appearance-based Human Gait Recognition 5.1 Gait Period Detection 5.2 Gait Feature Extraction 5.2.1 Dynamic Feature Extraction 5.2.2 Static Feature Extraction 5.3 Human ID Recognition in Multiple Paths 5.3.1 Learning Procedure by PCA and MDA 5.3.2 Walking Path Recognition 5.3.3 Hybrid Human ID Recognition 5.4 Experimental Results 5.5 Summary 6. Conclusions and Future Work 6.1 Future Work 7. Appendix

    [1] M. Bray, E. Koller-Meier, and L. Van Gool, “Smart Particle Filtering for 3D Hand Tracking,” in Proc. IEEE FGR 2004.
    [2] M. Bray, E. Koller-Meier, and L. Van Gool, “Smart Particle Filtering for High-dimensional Tracking,” Computer Vision and Image Understanding, vol. 106, Apr. 2007.
    [3] D. Huan and E. Charbon, “3D Hand Model Fitting for Virtual Keyboard System,” IEEE Workshop on Applications of Computer Vision 2007.
    [4] Y. Wu, Y. L. Lin, and T. S. Huang, “Capturing Natural Hand Articulation,” ICCV 2001.
    [5] A. Erol, G. Bebis, M. Nicolescu, R. D. Boyle, and X. Twombly, “A Review on Vision-Based Full DOF Hand Motion Estimation,” CVPR 2005.
    [6] A. El-Sawah, C. Joslin, N. D. Georganas, and E. M. Petriu, “A Framework for 3D Hand Tracking and Gesture Recognition using Elements of Genetic Programming,” in Proc. IEEE CRV 2007.
    [7] A. Erol, G. Bebis, M. Nicolescu, R. D. Boyle, and X. Twombly, “Vision-based Hand Pose Estimation: A Review,” Computer Vision and Image Understanding, vol. 108, Oct. 2007.
    [8] C.-C. Lien, “A Scalable Model-based Hand Posture Analysis System,” Machine Vision and Applications, vol. 16, no. 3, 2005.
    [9] Y. Wu and T. S. Huang, “View-independent Recognition of Hand Postures,” CVPR 2000.
    [10] V. Athitsos and S. Sclaroff, “Estimating 3D Hand Pose from a Cluttered Image,” CVPR 2003.
    [11] V. Athitsos and S. Sclaroff, “An Appearance-based Framework for 3D Hand Shape Classification and Camera Viewpoint Estimation,” in Proc. IEEE FGR 2002.
    [12] A. Imai, N. Shimada, and Y. Shirai, “3-D Hand Posture Recognition by Training Contour Variation,” in Proc. IEEE FGR 2004.
    [13] W. Y. Chang, C. S. Chen, and Y. P. Huang, “Appearance-guided Particle Filtering for Articulated Hand Tracking,” CVPR 2005.
    [14] M. Bray, E. Koller-Meier, N. N. Schraudolph, and L. Van Gool, “Fast Stochastic Optimization for Articulated Structure Tracking,” Image and Vision Computing, vol. 25, Mar. 2007.
    [15] E. B. Sudderth, M. I. Mandel, W. T. Freeman, and A. S. Willsky, “Visual Hand Tracking using Nonparametric Belief Propagation,” CVPRW 2004.
    [16] Y. Wu, J. Lin, and T. S. Huang, “Analyzing and Capturing Articulated Hand Motion in Image Sequences,” IEEE Transactions on PAMI, vol. 27, Dec. 2005.
    [17] N. Shimada, Y. Shirai, Y. kuno, and J. Miura, “Hand Gesture Estimation and Model Refinement using Monocular Camera-Ambiguity Limitation by Inequality Constraints,” in Proc. IEEE FGR 1998.
    [18] Y. Wu, and T. S. Huang, “Capturing Articulated Human Hand Motion: A Divide and Conquer Approach,” ICCV 1999.
    [19] B. Stenger, P. R. S. Mendonca, and R. Cipolla, “Model-based 3D Tracking of an Articulated Hand,” CVPR 2001.
    [20] H. Zhou, and T. Huang, “Okapi-chamfer Matching for Articulated Object Recognition,” ICCV 2005.
    [21] B. Stenger, A. Thayananthan, P. H. S. Torr, and R. Cipolla, “Filtering using a Tree-Based Estimator,” ICCV 2003.
    [22] J. Y. Lin, Y. Wu, and T. S. Huang, “3D Model-based Hand Tracking Using Stochastic Direct Search Method,” in IEEE AFGR 2004.
    [23] H. Zhou, and T. Huang, “Tracking Articulated Hand Motion with Eigen Dynamics Analysis,” ICCV 2003.
    [24] Q. Delamarre, and O. Faugeras, “3D Articulated Models and Multiview Tracking with Physical Forces,” Computer Vision and Image Understanding, vol. 81, Mar. 2001.
    [25] M. Kato, Y. W. Chen, and G. Xu, “Articulated Hand Tracking by PCA-ICA Approach,” IEEE FGR 2006.
    [26] C. M. Oh, Z. Islam, and C. W. Lee, “Articulated Hand Tracking using Key Poses Driven Particle Filtering,” in 2nd International Conference on Computer Engineering and Technology 2010.
    [27] M. Isard, “PAMPAS: Real-valued graphical Models for Computer Vision,” CVPR 2003.
    [28] E. B. Sudderth, A. T. Ihler, W. T. Freeman, and A. S. Willsky, “Nonparametric Belief Propagation,” CVPR 2003.
    [29] T. Liu, W. Liang, X. Wu, and L. Chen, “Tracking Articulated Hand Underlying Graphical Model with Depth Cue,” in Congress on Image and Signal Processing 2008.
    [30] Ching-Yu Weng, “A Vision-based Hand Motion Parameter Capturing System,” master’s thesis, Institute of Electrical Engineering, National Tsing Hua University, Jul. 2007.
    [31] C. Shan, T. Tan, and Y. Wei, “Real-time Hand Tracking using A Mean Shift Embedded Particle Filter,” Pattern Recognition, vol. 40, Jul. 2007.
    [32] M. Isard, and A. Blake, “CONDENSATION-Conditional Density Propagation for Visual Tracking,” International Journal of Computer Vision, vol. 29, Jan. 1998.
    [33] “OpenGL.” Available: http://www.opengl.org
    [34] DataGlove, “5DT Fifth Dimension Technologies,” http://www.5dt.com/products/pdataglove14.html.
    [35] J. Mantyjarvi, J. Himberg, and T. Seppanen, “Recognizing Human Motion with Multiple Acceleration Sensors,” IEEE SMC 2001.
    [36] B. Najafi, K. Aminian, A. Paraschiv-Ionescu, F. Loew, C. J. Bula, and P. Robert, “Ambulatory System for Human Motion Analysis using A Kinematic Sensor: Monitoring of Daily Physical Activity in the Elderly,” IEEE Trans. on Biomedical Engineering, vol. 50, Jun. 2003.
    [37] L. Herda, R. Urtasun, and P. Fua, “Hierarchical Implicit Surface Joint Limits for Human Body Tracking,” Computer Vision and Image Understanding, vol. 99, Aug. 2005.
    [38] J. Deutscher, A. Blake, and I. Reid, “Articulated Body Motion Capture by Annealed Particle Filtering,” CVPR 2000.
    [39] J. Darby, B. Li and N. Costen “Tracking a Walking Person using Activity-Guided Annealed Particle Filtering,” IEEE Int. Conf. on Automatic Face and Gesture Recognition 2008.
    [40] L. Raskin, E. Rivlin, M. Rudzsky ”Dimensionality Reduction for Articulated Body Tracking,” 3DTV Conference 2007.
    [41] R. Poppe, ”Vision-based Human Motion Analysis: an Overview,” Computer Vision and Image Understanding, vol. 108, Oct. 2007.
    [42] A. Agarwal and B. Triggs, “Recovering 3D Human Pose from Monocular Images,” IEEE Trans. on PAMI, vol. 28, Jan. 2006.
    [43] P. Peursum, “On the Behaviour of Body Tracking with the Annealed Particle Filter in Realistic Conditions,” Technical Report of the Dept. of Computing, Curtin Univ. of Technology, 2006.
    [44] X. Xu, and B. Li, “Learning Motion Correlation for Tracking Articulated Human Body with a Rao-Blackwellised Particle Filter,” ICCV 2007.
    [45] J. Schmidt, J. Fritsch, and B. Kwolek, “Kernel Particel Filter for Real-time 3D Body Tracking in Monocular Color Images,” IEEE 7th Int. Conf. on Automatic Face and Gesture Recognition 2006.
    [46] P. Peursum, S. Venkatesh and G. West, “Tracking-as-Recognition for Articulated Full-Body Human Motion Analysis,” CVPR 2007.
    [47] C. Chen and G. Fan, “Combining Spatial and Temporal Priors for Articulated Human Tracking with Online Learning,” IEEE 12th Int. Conf. on Computer Vision Workshops 2009.
    [48] J. Darby, B. Li and N. Costen, “Behavior Based Particle Filtering for Human Articulated Motion Tracking,” ICPR 2008.
    [49] T. X. Han, H. Ning, and T. S. Huang, “Efficient Nonparametric Belief Propagation with Application to Articulated Body Tracking,” CVPR 2006.
    [50] L. Sigal, S. Bhatia, S. Roth, M. J. Black, and M. Isard, “Tracking Loose-Limbed People,” CVPR 2004.
    [51] L. Sigal and M. J. Black, “Measure Locally, Person Globally : Occlusion-sensitive Articulated Pose Estimation,” CVPR 2006.
    [52] R. Urtasun, D. T. Fleet, A. Hertzmann, and P. Fua, “Priors for People Tracking from Small Trainig Sets,” ICCV 2005.
    [53] R. Urtasun, D. T. Fleet, and P. Fua, “3D People Tracking with Gaussian Process Dynamic Models,” CVPR 2006.
    [54] CASIA Gait Database, http://www.sinobiometrics.com, 2006.
    [55] L. Lee, and W. E. L Grimson, W.E.L, “Gait Analysis for Recognition and Classification,” in IEEE Int. Conf. on Automatic Face and Gesture Recognition 2002.
    [56] D. Tao, X. Li, X. Wu, S. J. Maybank, “General Tensor Discriminant Analysis and Gabor Features for Gait Recognition,” IEEE Trans. on PAMI, vol. 29, Oct. 2007.
    [57] N.V. Boulgouris, D. Hatzinakos, and K.N. Plataniotis, “Gait Recognition: a Challenging Signal Processing Technology for Biometric Identification,” IEEE Signal Processing Magazine, vol. 22, Nov. 2005.
    [58] H. Su and F. G. Huang, “Human Gait Recognition Based on Motion Analysis,” Proc. of the 4th International Conference on Machine Learning and Cybernetics 2005.
    [59] N. V. Boulgouris and Z. X. Chi, “Gait recognition using random transform and linear discriminant analysis,” IEEE Trans. on Image Processing, vol. 16, Mar. 2007.
    [60] N. V. Boulgouris and Z. X. Chi, “Gait Recognition Based on Human Body Components,” ICIP 2007.
    [61] J. Han and B. Bhanu, “Individual Recognition using Gait Energy Image,” IEEE Trans. on PAMI, vol. 28, Feb. 2006.
    [62] J. Liu and N. Zheng, “Gait History Image: A Novel Temporal for Gait Recognition,” ICME 2007.
    [63] Q. Ma, S. Wang, D. Nie and J. Qiu, “Recognizing Humans Based on Gait Moment Image, ” 8th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing 2007.
    [64] P. S. Huang, C. J. Harris, and M. S. Nixon, “Recognizing Humans by Gait via Parametric Canonical Space,” Artificial Intelligence in Eng., vol. 13, 1999.
    [65] M. H. Cheng, M. F. Ho and C. L. Huang, “Gait Analysis for Human Identification Through Manifold Learning and HMM,” Pattern Recognition, vol. 41, Aug. 2008.
    [66] S. Sarkar, P. J. Phillips, Z. Liu, I. R. Vega, P. Grother, and K. W. Bowyer, “The HumanID Gait Challenge Problem: Data Sets, Performance, and Analysis,” IEEE Trans. on PAMI, vol. 27, Feb. 2005.
    [67] K. Bashir, T. Xiang, S. Gong and Q. Mary, “Feature Selection on Gait Energy Image for Human Identification,” ICASSP 2008.
    [68] A. Bissacco, P. Saisan and S. Soatto, “Gait Recognition using Dynamic Affine Invariants,” Proc. of the MTNS 2004.
    [69] S. Chen and Y. Gao, “An Invariant Appearance Model for Gait Recognition,” ICME 2007.
    [70] S. Yu, D. Tan and T. Tan, “A Framework for Evaluating the Effect of View Angle, Clothing and Carrying Condition on Gait Recognition,” ICPR 2006.
    [71] R. C. Gonzales and R. E. Woods, Digital Image Processing, Prentice Hall.
    [72] USF Gait Baseline Database, http://www.GaitChallenge.org, 2

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE