簡易檢索 / 詳目顯示

研究生: 王澤理
Wang, Tse-Li
論文名稱: 應用類神經網路改善有限張數投影下濾波逆投影法之重建影像
Using Artificial Neural Network to Improve The Result of Filtered Back-Projection Technique in Limit Projections
指導教授: 林士傑
Lin, Shin-Chieh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 88
中文關鍵詞: X射線電腦斷層掃瞄法代數重建法BGA檢測濾波逆投影法類神經網路
外文關鍵詞: X-Ray Computer Tomography, Artificial Neural Network, BGA inspection, SART
相關次數: 點閱:68下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對高度競爭的電子產業而言,製程後續的檢測不僅可以提高產品的良率,更能減少在不良品上加工的浪費。利用X射線電腦斷層掃瞄法(X-Ray Computer Tomography)進行影像重建,來判斷生產線上的製程缺陷,但因為在投影時間或者是運算速度上無法同時達到工業所要求的速度,本研究將利用類神經網路配合濾波逆投影法(FBP)來改善有限張數投影下重建影像品質不佳的問題。
    另外本研究也使用修正型SART(ELSSART)來重建影像,重建三維空間的BGA錫球結構,並由所得到的影像與SART的重建結果做分析和比較。


    摘要 第一章 緒論 第二章 文獻回顧 第三章 類神經網路實驗步驟與規劃 第四章 實驗結果與討論 第五章 ELSSART之實驗規畫與結果討論

    [1] Intel’s 1999 Packaging Databook, Intel Corporation, New York, 2000.
    [2] AMD Functional Data Sheet, 754 Pin Package, Advanced Micro Devices, New York, 2004.
    [3] 宋維泰,「封裝技術探索」,大椽股份有限公司,台北市,2005。
    [4] T.D. Moore, “Three-Dimensional X-Ray Laminography as A Tool for Detection and Characterization of BGA Package Defects,” IEEE, Transactions on Components and Packaging Technologies, Vol. 25, No. 2, pp. 224-229, June 2002.
    [5] S. Krimmel, J. Stephan, and J. Baumann, “3D Computed Tomography Using A Microfocus X-ray Source: Analysis of Artifact Formation in The Reconstructed Images Using Simulated as well as Experimental Projection Data,” Nuclear Instruments and Methods in Physics Research, Section A-542, pp. 399-407, February 2005.
    [6] G.T. Herman, Phys. Med. Biol. 24 (1) (1979) 81, 1979.
    [7] P. Hammersberg, M. Mangard, J. X-ray Sci. Technol. 8 75, 1998
    [8] Fu Jian, Lu Hongnian,“Beam-Hardening Correction Method Based on Original Sinogram for X-CT,” Nuclear Instruments and Methods in Physics Research A556, pp. 379-385, November 2005.
    [9] Avinash C. Kak and M. Slaney, ”Principles of Computerized Tomographic Imaging,” IEEE Press, 1988.
    [10] S. Gondrom, and M. Maisl, “3D Reconstructions of Micro-System Using X-Ray Tomographic Methods,” Fraunhofer Development Center X-ray Technology, Saarbruecken, Germany, 2004
    [11] Gabor T. Herman, “Image Reconstruction From Projections:The Fundamental of Computed Tomography,” Academic Press, 1980.
    [12] Yair Censor,“Finite Series-Expansion Reconstruction Methods,” Proceedings of IEEE, Vol. 71, No. 3, March 1983.
    [13] Y.J. Roh, and H.S. Cho, “Implementation of Uniform and Simultaneous ART for 3D Reconstruction in An X-Ray Imaging system,” IEE Image Signal Process,Vol. 151, 2004.
    [14] S. Kaczmarz, “Angenaherte Auflosung Von Systemen Linearer Gleichungen,” Bull. Acad. Pol. Sci. Lett. A, Vol. 6-8A, pp. 355-357, 1937.
    [15] K. Tanabe, “Projection Method for Solving a Singular System,” Numer. Math., Vol. 17, pp. 203-214, 1971.
    [16] A.H. Andersen, and A.C. Kak, “Simultaneous Algebraic Reconstruction Technique (SART): A Superior Implementation of The ART Algorithm,” Ultrasonic Imaging, Vol. 6, pp. 81-94, 1984.
    [17] Wenkai Lu, Fang-Fang Yin, “Adaptive Algebraic Reconstruction Technique,” Medical Physics, Vol. 31, No. 12, December 2004.
    [18] Klaus Mueller, Roni Yagel, and J. Fredrick Cornhill, “The Weighted-Distance Scheme: A Globally Optimizing Projection Ordering Method For ART,” IEEE Transactions On Medical Imaging, Vol. 16, No. 2, 1997.
    [19] Huaiqun Guan and Richard Gordon, “A Projection Access Order For Speedy Convergence of ART (algebraic reconstruction technique):A Multilevel Scheme for Computed Tomography,” IPO Publishing Ltd, 1994.
    [20] Klaus Mueller, Roni Yagel, and John J. Wheller, “Anti-Aliased Three-Dimensional Cone-Beam Reconstruction of Low-Contrast Objects with Algebraic Methods,” IEEE Transactions On Medical Imaging, Vol. 18, No. 6, June 1999.
    [21] 林源益,「應用同步代數重建法於BGA檢測之研究」,國立清華大學動機所,2008年6月。
    [22] 梁志彰,「應用FDK重建法於BGA檢測之研究」,國立清華大學動機所,2008年6月。
    [23] 蘇春木、張孝德,「機器學習:類神經網路、模糊系統以及基因演算法則」,全華圖書股份有限公司,2007。
    [24] M. Morisue, K. Sakai, H. Koinuma, “Neural networks for Computed Tomography,” Proc. IEEE, vol. 6, pp. 2893–2896, 1992.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE