研究生: |
呂寧遠 Lue, Ning-Yuan |
---|---|
論文名稱: |
Physics of Nanoscale Isospin Electronics: Spin-filtering in Luttinger Liquid and Valleytronics in Graphene 奈米尺度同位旋電子學的物理: Luttinger液體的自旋過濾與石墨烯的能谷電子學 |
指導教授: |
吳玉書
Wu, George Yu-Shu |
口試委員: |
朱仲夏
牟中瑜 孫允武 鄭舜仁 陳正中 |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2011 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 96 |
中文關鍵詞: | Luttinger 、量子液體 、石墨烯 、量子點 、量子位元 、Rashba效應 |
外文關鍵詞: | Luttinger, quantum liquid, bosonization, graphene, quantum dot, quantum bit, Rashba effect, spin-filtering, scaling dimension, valleytronics, valley electronics |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The non-charge degree of freedom (DOF) of a quantum mechanical system, which is called “isospin” in this thesis, provides chances for designing new functional or even novel devices. Chapter 1 gives the preparation for the following discussions. In Chapter 2, we study spin-filtering of a magnetic impurity in quasi-one-dimensional electron liquids with Rashba spin-orbit interaction. The study is within the framework of Tomonaga-Luttinger theory, and the spin-charge separation is not valid due to this Rashba interaction. The weak magnetic impurity provides the scattering mechanism and breaks the time-reversal symmetry. Combing all these elements, it is found that the spin polarization or net spin current will be generated. In Chapter 3, a physical implementation of the valley-pair quantum bits (qubits) on gapped graphene double quantum dot is proposed. Graphene is a two-dimensional material with the unique electron dispersion - it has two degenerate, independent energy valleys, a novel degree of freedom, and the graphene with energy gaps at these valleys are assumed in our study. Similar to the spin-pair qubits which use spin-singlet/triplet, we use “valley-singlet/triplet” to form the valley-pair qubits. We further provide practical procedures to manipulate the qubits based on electrical tuning of the valley moment. Valley pair qubits are characterized by a) scalability and fault-tolerance, b) all-electric manipulation via electric gates, and c) long coherence time, all being rather useful assets in qubit implementation.
電子除了基本電荷量以外還帶有自旋。本文把基本電荷量以外,像電子自旋這樣的,其他用來描述電子狀態的量子數或自由度,稱為“同位旋”。而同位旋電子學探討的是,利用這些額外的自由度來設計新功能的元件的可能性。本文第一章提供對後面討論的相關的準備,第二章開始,便討論在准一維電子系統中,磁性雜質伴隨Rashba效應產生的自旋過濾。整個討論使用Tomonaga-Luttinger的理論,而Luttinger理論中常出現的電荷-自旋分離,在我們加入的Rashba效應影響下會被破壞。弱磁性雜質是一個破壞時間反演對稱的散射源。一起考慮這些機制的系統,將會有自旋極化的效果(即產生自旋電流)。本文的第三章提出基於石墨烯其色散關係的valley(能谷)這個新穎自由度而設計出的雙量子點量子位元。石墨烯的色散關係中,包含兩個簡併的能谷。我們的討論還假定了石墨烯在能谷處已經打開了能隙。類似用自旋的singlet和triplet形成自旋對量子位元的想法,我們的設想是利用能谷的singlet和triplet。此外,我們也提出了基於以電壓調變能谷磁矩,來操作此量子位元的方法。基於能谷的量子位元的特性或優點,乃是:a) 容錯的與可以規模化集成的能力,b) 可用電極來進行全電性的操控 和 c) 很長的相干時間,以上皆是建構量子位元時的重要考慮。
1. A. G. Aronov, Pis’ma Zh. Eksp. 24, 37 (1976) [JETP Lett. 24, 32 (1976)].
2. S. Datta and B. Das, Apply. Phys. Lett. 56, 665 (1990).
3. D. D. Awshalom and J. M. Kikkawa, Phys. Today 52 (6), 33 (1999).
4. I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).
5. C. S. Peca and L. Balents, and K. J. Wiese, Phys. Rev. B 68, 205423 (2003).
6. Q. Si, Phys. Rev. 78, 1767 (1997).
7. T. Kimura, K. Kuroki, and H. Aoki, Phys. Rev. B 53, 9572 (1996).
8. D. Schmeltzer, Phys. Rev. B 65, 193303 (2002); D. Schmeltzer, A. R. Bishop, A. Saxena, and D. L. Smith, Phys. Rev. Lett. 90, 116802 (2003); H.-Y. Chang and D. Schmeltzer, Phys. Lett. A 345, 45 (2005).
9. T. Hikihara, A. Furusaki, and K. A. Matveev, Phys. Rev. B 72, 035301 (2005).
10. K. Kamide, Y. Tsukada, and S. Kurihara, Phys. Rev. B 73, 235326 (2006).
11. A. V. Moroz and C. H. W. Barnes, Phys. Rev. B 60, 14272 (1999); A. V. Moroz, K. V. Samokhin, and C. H. W. Barnes, Phys. Rev. Lett. 84, 4164 (2000); A. V. Moroz, K. V. Samokhin, and C. H. W. Barnes, Phys. Rev. B 62, 16900 (2000).
12. P. Streda and P. Seba, Phys. Rev. Lett. 90, 256601 (2003).
13. S. Tomonaga, Prog. Theor. Phys. 5, 544 (1950).
14. J. M. Luttinger, J. Math. Phys. 4, 1154 (1963).
15. J. Solyom, Adv. Phys. 28, 201 (1970).
16. A. Luther, V. J. Emery, Phys. Rev. Lett. 33, 589 (1974).
17. F. D. M. Haldane, J. Phys. C 14, 2585 (1981).
18. T. Giamarchi, H. J. Schulz, Phys. Rev. B37, 325 (1988).
19. C. L. Kane and M. P. A. Fisher, Phys. Rev. B 46, 15233 (1992).
20. A. Furusaki and N. Nagaosa, Phys. Rev. B 47, 3827 (1993).
21. D. L. Maslov and M. Stone, Phys. Rev. B 52, R5539 (1995).
22. V. V. Ponomaraenko, Phys. Rev. B 52, R8666 (1995).
23. A. Gogolin, A. Nersesyan, A. Trvelik, Bosonization and Strongly Correlated Systems (Cambridge Univ. Press, Cambridge, 1998); T. Giamarchi, Quantum Physics in One Dimension (Clarendon Press, Oxford, 2003)
24. V. Gritsev, G. Japaridze, M. Pletyukhov, and D. Baeriswyl, Phys. Rev. Lett. 94, 137207 (2005).
25. J. Sun, S. Gangadharaiah, and O. A. Starykh, Phys. Rev. Lett. 98, 126408 (2007).
26. V. L. Pokrovskii and G. V. Uimin, Zh. Eksp. Teor. Fiz. 65, 1691 (1973) [Sov. Phys. JETP 38, 847 (1974)].
27. W. Hausler, L. Kecke, and A. H. Macdonald, Phys. Rev. B 65, 085104 (2002).
28. J. R. Heath and M. A. Ratner, Physics Today, May 2003, p.43.
29. K. Ishizaka el al., Nature Mater. 10, 521(2011).
30. R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole
Systems (Berlin: Springer, 2003).
31. J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. Zutic, Semiconductor
Spintronics, arXiv: 0711.1461 [cond-mat].
32. M. Governale and U. Zülicke. Solid State Communications 131, 581 (2004).
33. N.-Y. Lue and G. Y. Wu, Phys. Rev. B 81, 165301 (2010).
34. Branislav K. Nikolic, Liviu P. Zarbo, and Satofumi Souma, Spin Currents in
Semiconductor Nanostructures, arXiv: 0907.4122 [cond-mat].
35. P. Nozieres, Interacting Fermi Systems (W. A. Benjamin Inc, New York, 1964).
36. A. A. Abrikosov, L. P. Gorkov, and I. E. Dzialoshinskii, Method of Quantum
Field Theory in Statistical Mechanics (Dover, 1975).
37. R. Peierls, Quantum Theory of Solids (Oxford University Press, London, 1955)
38. J. M. Ziman, Principles of the Theory of Solids (Cambridge University Press,
1979).
39. G. F. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid (Cambridge
University Press, 2005).
40. Bockrath, M. et al. Nature 397, 598–601 (1999).
41. Tserkovnyak et al., Phys. Rev. B. 68, 125312 (2003).
42. V. Vescoli et al., Eur. Phys. J. B 13, 503{511 (2000).
43. M. Grayson et al., Phys. Rev. Lett. 80, 1062 (1998).
44. Gregory A. Fiete, The spin-incoherent Luttinger liquid, arXiv: 0611597
[cond-mat].
45. J. W. Negele and H. Orland, Quantum Many-Particle Systems,
(Perseus Books, 1988).
46. D.S.L. Abergel et al., Properties of graphene: a theoretical perspective,
Advances in Physics, Vol. 59, 261–482 (2010).
47. D. Deutsch, Proc. R. Soc. Lond. A 400, 97 (1985); P. W. Shor, in Proceedings of the 35th Annual Symposium on Foundations of Computer Science, S. Goldwasser, Ed. (IEEE Computer Society Press, Los Alamitos, CA, 1994); L. K. Grover, Phys. Rev. Lett. 79, 325 (1997); M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2003).
48. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,
I. V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004); A. K. Geim and
K. S. Novoselov, Nature Mater. 6, 183 (2007).
49. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim,
Rev. Mod. Phys. 81, 109 (2009).
50. A. Rycerz, J. Tworzydlo, and C. W. J. Beenakker, Nature phys. 3, 172 (2007).
51. G. Y. Wu, N.-Y. Lue, and L. Chang, arXiv: 1104.0443 [cond-mat.mes-hall].
52. P. Recher, B. Trauzettel, A. Rycerz, Ya. M. Blanter, C. W. J. Beenakker, and
A. F. Morpurgo, Phys. Rev. B 76, 235404 (2007).
53. A. Palyi and G. Burkard, Phys. Rev. Lett. 106, 086801 (2011).
54. D. Loss and D. P. DiVincenzo, Phys. Rev. A. 57, 120 (1998);
G. Burkard, D. Loss, and D. P. DiVincenzo, Phys. Rev. B 59, 2070 (1999).
55. D. A. Lidar, I. L. Chuang, and K. B. Whaley, Phys. Rev. Lett. 81, 2594 (1998).
56. J. Levy, Phys. Rev. Lett. 89, 147902 (2002).
57. M. Mohseni and D. A. Lidar, Phys. Rev. Lett. 94, 040507 (2005).
58. J. M. Taylor et al., Nature Phys. 1, 177 (2005).
59. J. Petta et al., Science 309, 2180 (2005).
60. E. I. Rashba and A. L. Efros, Phys. Rev. Lett. 91, 126405 (2003).
61. V. N. Golovach, M. Borhani, and D. Loss, Phys. Rev. B 74, 165319 (2006).
62. C. Flindt, A. S. Sorensen, and K. Flensberg, Phys. Rev. Lett. 97, 240501 (2006).
63. B. Trauzettel, D. B. Bulaev, D. Loss, and G. Burkard, Nature Phys. 3, 192 (2007);
P. Recher and B. Trauzettel, Nanotech. 21, 302001 (2010).
64. H. Ingerslev et al., Nature Phys. 4, 536 (2008).
65. A. V. Khaetskii and Y. V. Nazarov, Phys. Rev. B 61, 12639 (2000).
66. D. V. Bulaev and D. Loss, Phys. Rev B71, 205324 (2005).
67. P. Stano and J. Fabian, Phys. Rev. Lett. 96, 186602 (2006).
68. T. Meunier et al., Phys. Rev. Lett. 98, 126601 (2007).
69. A. Pfund et al., Phys. Rev. B. 76, 161308, (2007).
70. H.-A. Engel and D. Loss, Phys. Rev. Lett. 86, 4648 (2001).
71. F. H. L. Koppens et al., Nature 442, 766 (2006).
72. K. C. Nowack et al., Science 318, 1430 (2007).
73. S. Nadj-Perge et al., Nature 468, 1084 (2010).
74. S. Y. Zhou et al., Nature Mater. 6, 770 (2007).
75. G. Giovannetti et al., Phys. Rev. B 76, 073103 (2007).
76. D. Xiao, W. Yao, and Q. Niu, Phys. Rev. Lett. 99, 236809 (2007).
77. The VOI in a graphene sheet is derived by P. Gosselin et al., Eur. Phys. J. C 59,
883 (2009).
78. Also see P. Recher, J. Nilsson, G. Burkard, and B. Trauzettel, Phys. Rev. B 79,
085407 (2009).
79. The impurity-caused intervalley scattering in a gapless graphene sheet is discussed
by A. F. Morpurgo and F. Guinea, Phys. Rev. Lett. 97, 196804(2006).
80. J.-H. Chen et al., Nature Nanotech. 3, 206 (2008).
81. R. Hanson et al., Rev. Mod. Phys. 79, 1217 (2007)
82. DiVincenzo, Fortschr. Phys., 48,771(2000).