簡易檢索 / 詳目顯示

研究生: 陳致元
Chen, Chih-Yuan
論文名稱: 鰭式場效電晶體介電質電阻式記憶體陣列的隨機電報雜訊之應力與溫度效應
Stress and Temperature Effect on RTN Noise in FinFET Dielectric RRAM Array
指導教授: 林崇榮
Lin, Chrong-Jung
口試委員: 金雅琴
施教仁
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 40
中文關鍵詞: 隨機電報雜訊電阻式記憶體退火
外文關鍵詞: RTN, RRAM, Annealing
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,邏輯製程尺寸的迅速縮小提高了積體電路的特性與表現,隨之帶來許多對於現今製程方法與設計的挑戰與顧慮。許多原本微不足道的問題在科技節點繼續縮小的情況下,不能再被忽略;而隨機電報雜訊(Random Telegraph Noise,RTN)是其中之一。許多學者認真對待此問題,研究如何應對RTN所造成電路功能的改變及衰退;許多研究從縮小的元件上觀察RTN的表現,藉此探究RTN之特性及對電路、記憶體等元件的影響。
    在本研究中,我們觀測鰭式場效電晶體介電質電阻式隨機存取記憶體 (FinFET Dielectric RRAM, FIND RRAM) 陣列的讀取電流中的RTN訊號。在元件接受反覆循環應力 (cycling stress) 下,其表現的RTN訊號也會隨之改變。這些明顯的RTN雜訊在FIND RRAM 元件經過高溫時被緩解,而且在高溫退火 (anneal) 之後有減輕且減少的趨勢。有了這些實驗觀察,此論文提出並示範一個晶載的退火機制,使得我們能夠在元件局部產生熱模擬加熱的情況已達到退火的效果,藉以修復因反覆循環應力所產生的缺損,進而延長元件的耐久度。


    While rapid scaling of CMOS technology have improved the characteristics and performance of integrated circuits, it also raised challenges and concerns to existing methods and procedures. Many minor issues no longer remain minor as the device scales down the technology node, and Random telegraph noise (RTN) is one of them. Learning how to deal with RTN is a task many researchers partake in, and so it begins by examining the behavior of RTN signals in scaled devices.
    In this work, an observation on RTN signals in the read current of a FinFET Dielectric RRAM (FIND RRAM) array is presented. The RTN signal of a FIND RRAM cell is found to change after the device endured cycling stress. After undergoing cycling stress, RRAM cells have a stronger tendency to show more RTN signals. The increased RTN noise in FIND RRAM cells can be alleviated generally by high temperature anneal. With this concept, an on chip annealing scheme involving locally heating the device to achieve annealing procedure is proposed and demonstrates.

    摘要------------------------------------------------------i Abstract--------------------------------------------------ii Acknowledgement-------------------------------------------iii List of Contents------------------------------------------iv List of Figures-------------------------------------------vi Chapter 1 Introduction------------------------------------1 1.1 Preface-----------------------------------------------1 1.2 Motivation--------------------------------------------2 1.3 Thesis Organization-----------------------------------3 Chapter 2 Review of FIND RRAM array and RTN---------------4 2.1 Review of FinFET Dielectric RRAM----------------------4 2.1.1 Device Structure Introduction-----------------------4 2.1.2 Electrical Properties-------------------------------5 2.2 Review of RTN-----------------------------------------6 2.2.1 Mechanism-------------------------------------------6 2.2.2 RTN Effect on Devices-------------------------------7 2.3 Summary-----------------------------------------------7 Chapter 3 Stress Effect on RTN in FIND RRAM Array---------14 3.1 Experiment Setup Introduction-------------------------14 3.2 Stressing the FIND RRAM via Cycling-------------------15 3.3 RTN Characteristic of a FIND RRAM Array---------------15 3.3.1 Fresh Cell RTN--------------------------------------15 3.3.2 Cycling Effect--------------------------------------16 3.4 Summary-----------------------------------------------17 Chapter 4 Temperature Effect in FIND RRAM Array-----------25 4.1 Temperature and Annealing Effect on RTN---------------25 4.1.1 Temperature effect on RTN---------------------------26 4.1.2 Annealing effect on RTN-----------------------------26 4.2 Recovery of Middle State Bits after Annealing---------27 4.3 On-Chip Annealing-------------------------------------28 4.4 Summary-----------------------------------------------28 Chapter 5 Conclusion--------------------------------------37 Reference-------------------------------------------------38

    [1] Steve S. Chung, “The variability issues in small scale strained CMOS devices: Random dopant and trap induced fluctuations”, International Semiconductor Conference Dresden-Grenoble (ISCDG), 2012, pp. 107-111.
    [2] S. C. Binari, P. B. Klein, and T. E. Kazior, “Trapping effects in GaN and SiC microwave FETs”, proceeding of the IEEE, 2002, volume 90 issue 6, pp. 1048-1058.
    [3] Greg Leung and Chi On Chui, “Variability Impact of Random Dopant Fluctuation on Nanoscale Junctionless FinFETs”, IEEE Electron Device Letters, 2012, volume 33, Issue: 6, pp. 767-769.
    [4] Sk Masum Nawaz, Souvik Dutta, and Abhijit Mallik, “A comparison of random discrete dopant induced variability between Ge and Si junctionless p-FinFETs”, Appl. Phys. Lett. 107, 033506 (2015); https://doi.org/10.1063/1.4927279
    [5] Y. L. Chou, Tahui Wang, Mercator Lin, Y. W. Chang, Lenvis Liu, S. W. Huang, W. J. Tsai, T. C. Lu, K. C. Chen, and Chih-Yuan Lu, “Poly-Silicon Trap Position and Pass Voltage Effects on RTN Amplitude in a Vertical NAND Flash Cell String”, IEEE Electronic Device Lett., 2016, volume 37, issue 8, pp. 998-1001.
    [6] N. Tega, H. Miki, F. Pagette, D. J. Frank, A. Ray, M. J. Rooks, W. Haensch, and K. Torii, “Increasing threshold voltage variation due to random telegraph noise in FETs as gate lengths scale to 20 nm”, VLSI Symp. Tech. Dig., 2009, pp. 50-51.
    [7] Seng Oon Toh, Zheng Guo, and Borivoje Nikolić, “Dynamic SRAM stability characterization in 45nm CMOS”, VLSI Symp. Tech. Dig., 2010, pp. 35-36.
    [8] Y. F. Lim, Y. Z. Xiong, N. Singh, R. Yang, Y. Jiang, D. S. H. Chan, W. Y. Loh, L. K. Bera, G. Q. Lo, N. Balasubramanian, and D. -L. Kwong, “Random Telegraph Signal Noise in Gate-All-Around Si-FinFET With Ultranarrow Body”, IEEE Electron Device Lett., Sep. 2006, vol. 27, no. 9, pp. 765-768.
    [9] Sanghoon Lee, Heung-Jae Cho, Younghwan Son, Dong Seup Lee, and Hyungcheol Shin, “Characterization of oxide traps leading to RTN in high-k and metal gate MOSFETs”, Proc. IEEE IEDM, 2009, pp. 1-4.
    [10] Toshiharu Nagumo, Kiyoshi Takeuchi, Takashi Hase, and Yoshihiro Hayashi, “Statistical characterization of trap position, energy, amplitude and time constants by RTN measurement of multiple individual traps”, Proc. IEEE IEDM, 2010, pp. 28.3.1-28.3.4.
    [11] T. Grasser, H. Reisinger, W. Goes, Th. Aichinger, Ph. Hehenberger, P. -J. Wagner, M. Nelhiebel, J. Franco, and B. Kaczer, “Switching oxide traps as the missing link between negative bias temperature instability and random telegraph noise”, Proc. IEEE IEDM, 2009, pp. 1-4.
    [12] Hsin Wei Pan, Kai Ping Huang, Shih Yu Chen, Ping Chun Peng, Zhi Sung Yang, Cheng-Hsiung Kuo, Yue-Der Chih, Ya-Chin King, and Chrong Jung Lin, IEDM, 2015, pp. 10.5.1-10.5.4.
    [13] Liang Zhao, Zizhen Jiang, Hong-Yu Chen, Joon Sohn, Kye Okabe, Blanka Magyari-Köpe, H. -S. Philip Wong, and Yoshio Nishi, “Ultrathin (∼2nm) HfOx as the fundamental resistive switching element: Thickness scaling limit, stack engineering and 3D integration”, IEDM, Dec. 2014, pp. 6.6.1 - 6.6.4.
    [14] Stefan Machlup, “Noise in Semiconductors: Spectrum of a Two‐Parameter Random Signal”, J. Appl. Phys., 1954, vol. 25, pp. 341-343, https://doi.org/10.1063/1.1721637 .
    [15] Charles Surya and Thomas Y. Hsiang, “Theory and experiment on the 1/fγnoise in p-channel metal-oxide-semiconductor field-effect transistors at low drain bias”, Phys. Rev. B, 1986, vol. 33, pp. 4898-4905.
    [16] Ming-Long Fan, Vita Pi-Ho Hu, Yin-Nien Chen, Pin Su, and Ching-Te Chuang, “Analysis of Single-Trap-Induced Random Telegraph Noise on FinFET Devices, 6T SRAM Cell, and Logic Circuits”, IEEE Trans. Electron., Aug. 2012, vol. 59, pp. 2227-2234
    [17] Wei Feng, Chun Meng Dou, Masaaki Niwa, Keisaku Yamada, and Kenji Ohmori, ”Impact of Random Telegraph Noise Profiles on Drain-Current Fluctuation During Dynamic Gate Bias,” IEEE EDL, 2014.
    [18] Lee, Jung-Kyu, Ju-Wan Lee, Jinwon Park, Sung-Woong Chung, Jae Sung Roh, Sung-Joo Hong, Il-whan Cho, Hyuck-In Kwon, and Jong-Ho Lee, ”Extraction of trap location and energy from random telegraph noise in amorphous TiOx resistance random access memories,” Applied Physics Letters 98, 2011.
    [19] W. Feng, K. Yamada, and K. Ohmori, “Random Telegraph Noise Induced Drain-Current Fluctuation during Dynamic Gate Bias in Si MOSFETs,” IEEE, 2013.
    [20] C. M. Chang, Steve S. Chung, Y. S. Hsieh, L. W. Cheng, C. T. Tsai, G. H. Ma, S. C. Chien, and S. W. Sun, “The observation of trapping and detrapping effects in high-k gate dielectric MOSFETs by a new gate current Random Telegraph Noise (IG-RTN) approach”, IEDM, 2008, pp. 1-4
    [21] Y. Yuzhelevski, M. Yuzhelevski, and G. Jung, “Random telegraph noise analysis in time domain”, Rev. Sci. Instrum., 2000, vol. 71, pp. 1681-1688
    [22] Maurício Banaszeski da Silva, Hans P. Tuinhout, Adrie Zegers-van Duijnhoven, Gilson I. Wirth, and Andries J. Scholten, “A Physics-Based Statistical RTN Model for the Low Frequency Noise in MOSFETs,“ IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 63, NO. 9, SEPTEMBER 2016.
    [23] J. S. Kolhatkar, L. K. J. Vandamme, C. Salm, and H. Wallinga, “Separation of random telegraph signals from 1/f noise in MOSFETs under constant and switched bias conditions,” ESSDERC, pp. 549–552, 2003.
    [24] Charles Surya, Sze-Him Ng, Elliott R. Brown, and Paul A. Maki, ”Spectral and Random Telegraph Noise Characterizations of Low-Frequency Fluctuations in GaAs/Al0.4Ga0.6As Resonant Tunneling Diodes,” IEEE Trans. Electron, Nov. 1994, vol. 41, No. 11.
    [25] Yuan Heng Tseng, Wen Chao Shen, Chia-En Huang, Chrong Jung Lin, and Ya-Chin King, “Electron trapping effect on the switching behavior of contact RRAM devices through random telegraph noise analysis”, IEDM, 2010, pp. 28.5.1-28.5.4
    [26] B. H. Hong, L. Choi, Y. C. Jung, S. W. Hwang, K. H. Cho, K. H. Yeo, D. -W. Kim, G. Y. Jin, D. Park, S. H. Song, Y. Y. Lee, M. H. Son, and D. Ahn, “Temperature Dependent Study of Random Telegraph Noise in Gate-All-Around PMOS Silicon Nanowire Field-Effect Transistors”, IEEE Trans. Nanotechnol., Nov. 2010, vol. 9, no. 6, pp. 754-758.
    [27] H. Miki, M. Yamaoka, D. J. Frank, K. Cheng, D. -G. Park, E. Leobandung, and K. Torii, “Voltage and temperature dependence of random telegraph noise in highly scaled HKMG ETSOI nFETs and its impact on logic delay uncertainty”, VLSI Symp. 2012, pp. 137-138.10.
    [28] Chang-Hoon Jeon, Choong-Ki Kim, Jun-Young Park, Ui-Sik Jeong, Byung-Hyun Lee, Kyung Rok Kim, and Yang-Kyu Choi, “LF Noise Analysis for Trap Recovery in Gate Oxides Using Built-In Joule Heater”, IEEE Trans. Electron., Dec. 2017, vol. 64, issue 12, pp. 5081-5086
    [29] A. J. Lelis, T. R. Oldham, and W. M. DeLancey, “Response of interface traps during high-temperature anneals [MOSFETs]”, IEEE Trans. Nuclear Science, 1991, vol. 38, issue 6, pp. 1590-1597
    [30] Jinfeng Kang, Bin Gao, Bing Chen, Peng Huang, Feifei Zhang, Lifeng Liu, and Xiaoyan Liu, “Physical mechanism of resistive switching and optimization design of cell in oxide-based RRAM”, ICSICT, 2012, pp. 1-4

    QR CODE