研究生: |
黃永如 Huang, Yong-Ru |
---|---|
論文名稱: |
探討國小六年級學生數學解題策略與偏好之研究 Investigating Sixth Graders’ Mathematical Problem Solving Strategies and Preference |
指導教授: |
林勇吉
Lin, Yung-Chi |
口試委員: |
許慧玉
Hsu, Hui-yu 秦爾聰 Chin, Erh-Tsung |
學位類別: |
碩士 Master |
系所名稱: |
竹師教育學院 - 數理教育研究所 Graduate Institute of Mathematics and Science Education |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 129 |
中文關鍵詞: | 非視覺化 、表徵 、視覺化 、解題策略 |
外文關鍵詞: | Non-visualization, Representation, Visualization, Problem-solving strategies |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討國小六年級學生對視覺化與非視覺化的數學解題策略之偏好。研究中以新竹縣某國小六年級三個班級共80位學生為樣本,以測驗問卷方式進行施測。問卷共有十題數學試題,內容分為兩個部分作答:第一部分請學生依題意自由的進行解題,策略不限;第二部分請學生從視覺化與非視覺化解題策略的選項中去選擇偏好的解題策略,並簡述其選擇的原因,並挑選出較具代表性的9位學生進行半結構式的訪談。最後,由學生在兩部分的答題情形分析其解題策略的使用與偏好間的關係及其選擇原因之探討。
本研究主要結果如下:
一、大部分的學生在進行數學解題時,無論是否成功解題,都偏好以非視覺化解題策略之數學符號進行解題。少部分的學生會使用視覺化解題策略,但也有使用了圖示輔助,卻仍無法成功解題的學生。而非視覺化解題策略之文字表徵則是沒有任何人使用此方式進行解題。
二、當自行作答與偏好選擇相符時,大部分學生認為與其想法相同也比較快又容易理解。而影響學生選擇視覺化解題策略的原因主要有二:一,經常使用圖解,是在解題時就習慣畫圖的學生,在偏好上就會選擇視覺化解題策略;第二,當題目比較難或是複雜時,會使用或選擇圖示以幫助自己理解,但學生自行作答所畫的圖示不一定為線段圖,可能是示意圖或腳本圖示。
三、當自行作答與偏好選擇不相符時,關鍵在於解題步驟的細膩程度與題目的難易度。大部分學生使用非視覺化解題策略之數學符號解題,但在選擇偏好時,如果有詳細過程步驟的策略,才會是學生偏好選擇的方法;當學生發現自行解題錯誤或題目較難時,會改變自己使用或偏好的解題策略,讓自己更容易理解題目。
四、當面對熟悉或新習得的題型,「教師的教學與教科書的呈現」會影響其偏好選擇。
The purpose of this study is to investigate the preference of sixth-grade students in elementary school for mathematical problem solving via visualization or non-visualization strategies. In this study, there were 80 sixth graders in total enrolled from 3 different classes in an elementary school at Hsinchu County. The enrolled students received a questionnaire with 10 mathematical problems. The answers to the questionnaire are divided into two parts. In the first part, students were allowed to solve these problems as their free will without limitations. In the second part, students were asked to choose from the visualization or non-visualization strategies to solve these problems, and then to briefly describe the reason for their choice. There were 9 representative students further selected for a semi-structured interview. Based on the two parts of the answers from the questionnaire, we tried to analyze students' preferred strategies for mathematical problem solving and clarify the underlying reasons.
The main results of this study are as follows.
1.Most of the students preferred the non-visualization strategy to solve mathematical problems, no matter if the answer was correct or incorrect. A small number of the students would use visualization strategy, but there were still some students who failed to solve the problem despite using diagram assistance. Of note, no students choose to use text representation of the non-visualization strategy in this study.
2.Most of the students considered the preferred strategy was easier and faster to understand when the strategy was consistent with their free will. There are two factors influencing students to choose the visualization strategy. First, students who preferred visualization strategy are usually using a diagram to solve problems at their baseline. Second, when the problem is more difficult or complicated, students tend to use a diagram to facilitate problem understanding and reasoning. The diagram might not always be a line-diagram, but also a schematic diagram or script diagram.
3.When the preferred strategy is different from students' free will, the key points are the meticulousness during problem-solving, and the degree of difficulty among those problems. Most of the students used mathematical symbols representation of the non-visualization strategy to solve problems. Nevertheless, students also preferred to choose those strategies with detailed steps for problem-solving. When students found they solved the problem incorrectly, or when the problem was more difficult, they would change their preferred strategy in order to get a better understanding of the problems.
4.When facing new question types, "teacher's lecture and the content on the textbook" would influence a student's preferred strategy.
參考文獻
中文文獻
王偉斌(2013)。動態視覺化觸控式學習環境之實作:以國中多項式的乘法為例。
王瑞慶(2002)。著名數學解題歷程理論比較分析。屏師科學教育,16,39-45。
王德暄(2018)。國小六年級學童在「柱體體積」單元的錯誤類型分析。國立臺南大學,應用數學系碩士論文。
吳昭容(1990)。圖示對國小學童解數學應用問題之影響(未出版之碩士 論文)。國立台灣大學,臺北市。
吳昭容、黃一蘋(2003)。怎樣「簡化」數學文字題。國民教育,43(3),29-32。
呂玉琴,薛千薇,莊秉軒(2013)。國小六年級學童在分數除法文字題的解題表現,教育資訊交流,國民教育, 102年10月54卷1期。
李貞慧、葉啟村(2003)。低年級學童使用數的分解紀錄對解決加減問題校性之研究。南師學報,37,9-31。
李源順(主編)(2018)。國民小學數學五上(第九冊)教師專用課本。臺南市:南一書局企業股份有限公司。
李源順(主編)(2018)。國民小學數學五下(第十冊)教師專用課本。臺南市:南一書局企業股份有限公司。
李源順(主編)(2018)。國民小學數學六上(第十一冊)教師專用課本。臺南市:南一書局企業股份有限公司。
李源順(主編)(2018)。國民小學數學六下(第十二冊)教師專用課本。臺南市:南一書局企業股份有限公司。
李麗君、陳玟樺(2010)。數學文字比較題語意結構對國小六年級學生解題影響之研究。國民教育研究學報。24,129-153。
阮慧津(2009)。圖示解題策略應用於國小四年級學童解兩步驟文字題補救教學之個案 研究。國立屏東教育大學教育心理與輔導研究所碩士論文,未出版,屏東市。
房昔梅、鍾靜(2005)。國小教師在高年級實施討論式數學教學之行動研究。國立台北教育大學學報,18(2),33-64。
林施君(2013)。線段圖表徵對國小學生代數解題表現之研究(未出版之碩士論文)。國立屏東教育大學,屏東市。
林香(2003)。國小數學資優生的解題策略探究-以圖畫表徵策略為例。國立台 學院數理教育研究所碩士論文。
林香、張英傑(2004)。國小資優生運用畫圖策略解題之研究。台北師院學報,17(2),1-22。
林詩凱(2018)。探討國小六年級學生運用圖象表徵解題之表現。國立清華大學。
紀惠英(1991)。國小六年級學生數學應用問題表徵類型與同構性之研究。國立台灣師範大學特殊教育研究所碩士論文。
胡蕙芬、李源順(2005)。分數的整數倍教學實驗。科學教育研究與發展2005專刊,129-153。
凌久原(2006)。動態多重表徵對於國中生幾何單元學習成效之影響。國立成功大學教育研究所碩士論文,未出版,台南。
唐淑華(1995)。語文理解能力對解答數學應用題能力之實驗研究。師範學院教育學術論文發表會論文集,2,281-315。
涂金堂(1994)。國小學生後設認知、數學焦慮與數學解題表現之相關研究。未出版之碩士論文,高雄師範大學教育研究所,高雄市。
涂金堂(1999)。國小學生數學解題歷程之分析研究。初等教育學刊,7,295-332。
涂金堂(2007)。國小學生數學文字題問題結構與數學解題表現之相關研究。屏東教育大學學報,26,101-136。
康桂萍(2011)。國小五年級學童閱讀理解能力與數學文字題解題能力之相關研究。國立臺東大學語文教育研究所在職專班碩士論文。
張春興(1996)。教育心理學-三化取向的理論與實踐。台北:東華。
張春興(2002)。教育心理學─三化取向的理論與實踐。臺北市:東華。
教育部(2008)。九年一貫課程綱要數學學習領域。台北:作者。
教育部(2018)。十二年國民基本教育課程綱要。臺灣師範大學數學系碩士論文,未出版,臺北。
莊凱安(2003)。問題表徵與解題能力之相關性研究。國立台中師範教育測驗統計研究所碩士論文,未出版,台中市。
陳竹村(1998):對等關係與線段圖的教材處理。載於教育部臺灣省國民學校教師研習會](主編),國小數學科新課程概說(高年級)--協助兒童認知發展的數學課程,153-165。新北:台灣 省國民學校教師研習會。[Chen, Z. C. (1998). The manipulation of teaching materials in equivalent relation and line diagram. In Taiwan elementary school teacher workshops (Eds.), An introduction to new mathematics curriculum for elementary school-an mathematics curriculum to support cognition development of children (pp.153-165). New Taipei, Taiwan: Elementary School Teacher Workshops Press.]
陳其英(1999)。國一數學資優生問題同構轉化能力及外在表徵對解題影響之研究。國立臺灣師範大學科學教育研究所碩士論文。
陳密桃(2003)。認知負荷理論及其對教學的啟示。國立高雄師範大學教育學系教育學刊,21,29-51。
黃一泓、謝進泰(2016)。兩種線段圖表徵解題策略在學習成效上的比較。教育心理學報;47卷4期 ,581-601。
黃培晏(2012)。圖示策略解題的原理與應用-以線圖策略為例。檢索自https://r2.ntue.edu.tw/imgr20400/pdf/r2040215.pdf
黃敏晃(1991)。淺談數學解題。教與學,23,2-15。
黃瑞琴(1997)。質的教育研究方法。臺北市:心理。
楊晉民、陳嘉皇(2018)。應用數線表徵融入小二學生加減運算教學之成效。臺灣數學教師;39卷1期,35-66。
楊瑞智(1994)。國小五、六年級不同能力學童數學解題的思考過程。國立台灣師範大學科學教育研究所博士論文。
葉明達、柳賢(2003)。高一學生數學合作解題互動歷程之情意因素分析。花蓮師 院學報,16,235-267。
劉秋木(1996)。國小數學科教學研究。臺北市:五南。
劉家樟、楊凱琳(2006)。教師對學生解題信念與解題表現之差異。2006年中華民國第22屆科學教育學術研討會論文發表,418-424。臺北市:國立臺灣師範大學。
劉祥通、黃國勳、蘇逸潔(2010)。視覺化表徵的解題策略-- 以部分-整體對照活動為例。科學教育月刊,第 329 期,2-8。
潘霈榕(2008)。融入概念改變策略之視覺化學習系統對二極體迷思概念學習之影響。國立臺灣師範大學數學系碩士論文,未出版,臺北
蔡坤憲(譯)(2006)。怎樣解題(原作者:polya)。臺北市:天下遠見。
蔡勝隆(2004)。因應教育變革談「問題解決教學」。師說:中華民國全國教育會月刊,178,頁17-20。
蔣治邦(1994)。由表徵的觀點探討新教材數與計算活動的設計。載於教育部台灣省國民教育學校研習會(編),國民小學數學科新課程概說(低年級),(頁60-76)。台北:台灣省國民學校教師研習會。
蔣治邦(2001):中年級學童「部份-全體」運思的發展:文字題選圖與解題作業表現的差異。中華心理學刊,43(2),239-254。[Chiang, C. P. (2001). Development of part-whole operation:Pictorial representation addition and subtraction word problems. Chinese Journal of Psychology,43(2), 239-254.]
顏建豐(2019)。探討國小高年級學生對數學解釋的偏好。國立清華大學數理教育研究所碩士論文。
羅秋霞(2006)。圖示表徵策略對提昇國小三年級數學低成就學童加減文字題補救教學成效之研究。國立臺北教育大學特殊教育學系碩士班碩士論文,未出版,台北市。
羅彗心(2014)。視覺化表徵結合自我監控策略對國小輕度智能障礙學生加減文字題解題成效之研究。國立臺北教育大學特殊教育學系學位論文。
蘇琵雅(2010)。國小數學領域教科書整數加減表徵轉譯活動之內容分析:以一至三年級為例(未出版之碩士論文)。國立臺中教育大學,台中市。
西文部分
Ainsworth,S. (2006)DeFT: A conceptual framework for learning with multiple representations. Learning and Instruction, 16, 183-198.
Atanasova-Pacemska, T., Gunova, V., Lazarova, L., & Pacemska, S. (2016). Visualization of the Geometry Problems in Primary Math Education-Needs and Challenges.IMO-Istrazivanje matematickog obrazovanja,8(15), 33-37.
Behr, M. J., Lesh, R., Post, T. R., & Silver, E. A. (1983). Rational number concepts. In R. Lesh., & M. Landau (Eds.), Acquisition of mathematics concepts and process (pp. 91-126). New York: Academic Press, Inc.
Bruner, J. S. (1966). Toward a theory of instruction. Cambridge, MA: Harvard University
Campbell, K. J., Collis, K. F., & Watson, J. M. (1995). Visual processing during mathematical problem solving.Educational Studies in Mathematics,28(2), 177-194.
Dreyfus, T., & Eisenberg, T. (1996). On different facets of mathematical thinking. In R. J. Sternberg & T.Ben-Zeev (Eds.), The nature of mathematical thinking (pp. 253-284). Hillsdale, NJ: Lawrence Erlbaum Associates.
English, L. D., & Halford, G. S. (1995). Mathematics education.Mahwah, NJ: LEA.
Essen, G. Van & Hamaker, C. (1990). Using self-generated drawings to solve arithmetic word problems. Journal of Education Research, 83, 301-312.
Fosnot, C. T., & Dolk, M. (2001). Young mathematicians at work: Constructing multiplication and division. Portsmouth, NH: Heinemann.
Frykholm, J. (2010). Learning to Think Mathematically with the Number Line. Boulder,Colorado: Cloudbreak Publishing, Inc..
Gagne, R. M. (1985). The condition of learning and theory of instruction. New York:Holt, Rinehat and Winston.
Garderen, D. V. (2007). Teaching students with LD to use diagrams to solve mathematical word problems. Journal of Learning Disabilities, 40(6), 540-553.
Goldin, G. A. (2003). Representation in school mathematics: A unifying research perspective. In J. Kilpatrick, W. G. Martin, & D. Schifter (Eds.), A research companion to principles and standards for school mathematics (pp. 275-285). Reston, VA: National Council of Teachers of Mathematics. Goldin, G., & Shteingold, N. (2001). Systems of representations and the development of mathematical concepts. In A. A. Cuoco & F. R. Curcio (Eds.), The roles of representation in school mathematics: 2001 yearbook (pp. 1-23). Reston, VA: National Council of Teachers of Mathematics.
Hegarty, M., & Kozhevnikov, M. (1999). Types of visual-spatial representations and mathematical problem solving. Journal of Educational Psychology, 91(4), 684-689.
Jitendra, A. K. (2002). Teaching student math problem-solving through graphic representations. Teaching Exceptional Children, 34(4), 34-38.
Kaput, J. J. (1987). Representation systems and mathematics. In Janvier, C. (Ed.), Problems of representation in teaching and learning of mathematics (pp. 159-195). Hillsdale, NJ: Lawrence Erlbaum.
Larkin, J. H., & Simon, H. A. (1987). Why a diagram is sometimes worth ten thousand words. Cognitive Science, 11,65-100.
Lesh, R., Post, T., & Behr, M. (1987). Representations and translations among representations in mathematics learning and problem solving. In C. Janvier, (Ed.), Problems of representations in the teaching and learning of mathematics (pp. 33-40). Hillsdale, NJ: Lawrence Erlbaum.
Lewis, A. B., & Mayer, R. E. (1987). Students' miscomprehension of relational statements in arithmetic word problems.Journal of Educational psychology,79(4), 363-371.
Lowrie, T. (2000). A case of a reluctance to visualize. Focus on Learning Problems in.Mathematics, 29(1), 17-26.
Lowrie, T., & Clements, M. A.( 2001). Visual and nonvisual processes in grade 6 students' mathematical problem solving. Journal of Research in Childhood Education, 16(1), 77-93.
Lowrie, T., & Kay, R. (2001). Relationship between visual and nonvisual solution methods and difficulty in elementary mathematics. The Journal of Educational Research, 94(4), 248-255.
Marzano, R., Pickering, D., & Pollock, J., (2001). Class room instruction that works. Association for Supervision and Curriculum Development: Alexandria, VA: Association for Supervision and Curriculum Development
Mayer, R. E. (1992). Thinking, problem solving, cognition. New York: W. H. Freeman and Company.
Nati il of Teachers of Mathematics. ( 2000 ). Principles and standards for school mathematics. Reston,VA: Author.
National Council of Teachers of Mathematics. ( 1989 ).Curricalum and evaluation standards for school mathematics. Reston,VA: Author.
National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standard for school Mathematics. Palo Alto, Calif.: Dale Seymour Publications Press.strategies: A study of students' understanding of the group d4. Journal for Research
National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.
Pantziara, M., Gagatsis, A., & Elia, I. (2009). Using diagrams as tools for the solution of non-routine mathematical problems. Educational Studies in Mathematics, 72(1), 39-60.
Polya, J. (1957). How to solve it (2nd ed.). Garden City, NY:Doubleday Books.
Presmeg,N.C,&Bergsten,C.(1995) Preference for visual methods: An international study.In L Meita & D.Carraher(Eds.),Proceedings of 19th PME International Conference,3,58-65.
Schoenfeld, A. H. (1985). Mathematical Problem Solving. Orlando, FL: Academic Press.
Swanson, H. L., & Beebe-Frankenberger, M. (2004). The relationship between working memory and mathematical problem solving in children at risk and not at risk for serious math difficulties. Journal of Educational Psychology, 96(3), 471.
Sweller, J. (1988). Cognitive load during problem solving: Effects on learning.Cognitive science,12(2), 257-285.
Sweller, J., van Merriënboer, J. J. G., & Paas, F. G. W. C. (1998).Cognitive architecture and instructional design.Educational Psychology Review, 10(3), 251-297.
Van Hiele, P. M.(1986). Structure and insight. New York:Academic Press.
Ernest C. D. M. van Lieshout&Iro Xenidou-Dervou(2018). Pictorial representations of simple arithmetic problems are not always helpful: a cognitive load perspective. Educational Studies in Mathematics, 98(1), 39-55.
Witeck, K. S., & Ennis, B. H. (2007). Introduction to representation: Grades PreK-2.Portsmouth, NH: Heinemann.
Yakimanskaya, I. S. (1991). The development of spatial thinking in schoolchildren (Robert H. Silverman, Trans.). (Vol. 3). 95 Chicago: National Council of Teachers of Mathematics(originally published in 1980).
Zazkis, R., Dubinsky, E. & Dautermann, J. (1996). Coordinating visual and analytic strategies: A study of students' understanding of the group d4. Journal for Research in Mathematics Education, 27(4), 435-457.