研究生: |
吳昀靜 Wu, Yun-Ching |
---|---|
論文名稱: |
銅及鐵離子之催化環化反應於喹啉衍生物之合成研究 Copper and Iron-Catalyzed Annulation Reactions for the Synthesis of Quinoline Derivatives |
指導教授: |
鄭建鴻
Cheng, Chien-Hong |
口試委員: |
汪炳鈞
Uang, Biing-Jiun 謝仁傑 Hsieh, Jen-Chieh |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 165 |
中文關鍵詞: | 銅 、鐵 、環化反應 、喹啉 |
外文關鍵詞: | Copper, Iron, Annulation Reactions, Quinoline |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
喹啉衍生物在大自然中廣泛存在,因其具有良好的生物活性,在合成藥物領域之應用十分廣泛,如何有效率地合成喹啉衍生物遂成為一項值得研究的課題。本實驗室著重於使用過渡金屬合成之策略,隨著近年來環保意識的抬頭,且以降低合成成本為目標,本篇研究選用第一週期之過渡金屬:銅化合物及鐵化合物作為反應試劑,進行喹啉衍生物之合成研究。
第一章節提供一系列銅金屬化合物誘導之簡便合成方法,以胺類、聚甲醛及炔類化合物作為起始物,在硝基甲烷溶液中加入銅金屬化合物,發生分子間環化反應,可得到具有不同官能基之喹啉衍生物。
第二章節闡述鐵金屬化合物催化亞胺類化合物與1,4-環氧基萘起始物,在乙醇溶液中發生分子間環化反應,再經由脫去反應後得到喹啉產物;更延伸此方法至生成噌啉鹽類衍生物。
Quinoline derivatives are abundant in nature. Quinoline scaffold plays an important role in drug development as their derivatives have shown excellent biological activities. As a result, many scientists try hard to develop a more efficient way to synthesize quinoline derivatives. In this thesis, we selected copper and iron catalysts because of their plentiful resources and cheaper prices. Two methods about quinoline synthesis are demonstrated here.
Chapter 1 shows an approach toward the synthesis of quinolines via copper (II) promoted amines, formaldehyde, and internal alkynes for the intermolecular cycloaddition reaction.
Chapter 2 gives a special method of synthesis quinolines via iron (III) catalyzed intermolecular cycloaddition and elimination reaction from imines and 1,4-epoxynaphthalene. Finally, this method was successfully applied to synthesize cinnolinium salts.
1. Marella, A.; Tanwar, O. P.; Saha, R.; Ali, M. R.; Srivastava, S.; Akhter, M.; Shaquiquzzaman, M.; Alam, M. M., Saudi. Pharm. J. 2013, 21 (1), 1-12.
2. Ghosh, J.; Swarup, V.; Saxena, A.; Das, S.; Hazra, A.; Paira, P.; Banerjee, S.; Mondal, N. B.; Basu, A., Int. J. Antimicrob. Agents 2008, 32 (4), 349-354.
3. Afzal, O.; Kumar, S.; Haider, M. R.; Ali, M. R.; Kumar, R.; Jaggi, M.; Bawa, S., Eur. J. Med. Chem. 2015, 97, 871-910.
4. Ciamician, G. L.; Dennstedt, M., Ber. Dtsch. Chem. Ges. 1881, 14 (1), 1153-1163.
5. Pfitzinger, W., J. Prakt. Chem. 1886, 33 (1), 100-100.
6. Conrad, M.; Limpach, L., Ber. Dtsch. Chem. Ges. 1887, 20 (1), 944-948.
7. Camps, R., Ber. Dtsch. Chem. Ges. 1899, 32 (3), 3228-3234.
8. Amii, H.; Kishikawa, Y.; Uneyama, K., Org. Lett. 2001, 3 (8), 1109-1112.
9. Jiang, B.; Si, Y.-G., J. Org. Chem. 2002, 67 (26), 9449-9451.
10. Zhang, X.; Campo, M. A.; Yao, T.; Larock, R. C., Org. Lett. 2005, 7 (5), 763-766.
11. Liu, X.-Y.; Ding, P.; Huang, J.-S.; Che, C.-M., Org. Lett. 2007, 9 (14), 2645-2648.
12. Huang, H.; Jiang, H.; Chen, K.; Liu, H., J. Org. Chem. 2009, 74 (15), 5476-5480.
13. Venkatesan, H.; Hocutt, F. M.; Jones, T. K.; Rabinowitz, M. H., J. Org. Chem. 2010, 75 (10), 3488-3491.
14. Patil, N. T.; Raut, V. S., J. Org. Chem. 2010, 75 (20), 6961-6964.
15. Chen, M.; Sun, N.; Liu, Y., Org. Lett. 2013, 15 (21), 5574-5577.
16. Tummatorn, J.; Thongsornkleeb, C.; Ruchirawat, S.; Gettongsong, T., Org. Biomol. Chem. 2013, 11 (9), 1463-1467.
17. Meyet, C. E.; Larsen, C. H., J. Org. Chem. 2014, 79 (20), 9835-9841.
18. Kumar, Y. K.; Kumar, G. R.; Reddy, T. J.; Sridhar, B.; Reddy, M. S., Org. Lett. 2015, 17 (9), 2226-2229.
19. Mastalir, M.; Glatz, M.; Pittenauer, E.; Allmaier, G.; Kirchner, K., J. Am. Chem. Soc. 2016, 138 (48), 15543-15546.
20. Korivi, R. P.; Cheng, C.-H., J. Org. Chem. 2006, 71 (18), 7079-7082.
21. Gandeepan, P.; Rajamalli, P.; Cheng, C.-H., Asian J. Org. Chem. 2014, 3 (3), 303-308.
22. Luo, C.-Z.; Gandeepan, P.; Wu, Y.-C.; Chen, W.-C.; Cheng, C.-H., RSC Adv. 2015, 5 (128), 106012-106018.
23. Mio, M. J.; Kopel, L. C.; Braun, J. B.; Gadzikwa, T. L.; Hull, K. L.; Brisbois, R. G.; Markworth, C. J.; Grieco, P. A., Org. Lett. 2002, 4 (19), 3199-3202.
1. Xu, X.; Liu, W.; Wang, Z.; Feng, Y.; Yan, Y.; Zhang, X., Tetrahedron Lett. 2016, 57 (2), 226-229.
2. Vale, N.; Moreira, R.; Gomes, P., Eur. J. Med. Chem. 2009, 44 (3), 937-953.
3. Gomtsyan, A.; Bayburt, E. K.; Schmidt, R. G.; Zheng, G. Z.; Perner, R. J.; Didomenico, S.; Koenig, J. R.; Turner, S.; Jinkerson, T.; Drizin, I.; Hannick, S. M.; Macri, B. S.; McDonald, H. A.; Honore, P.; Wismer, C. T.; Marsh, K. C.; Wetter, J.; Stewart, K. D.; Oie, T.; Jarvis, M. F.; Surowy, C. S.; Faltynek, C. R.; Lee, C.-H., J. Med. Chem. 2005, 48 (3), 744-752.
4. Xu, W.-J.; Liu, S.-J.; Zhao, X.-Y.; Sun, S.; Cheng, S.; Ma, T.-C.; Sun, H.-B.; Zhao, Q.; Huang, W., Chem. Eur. J. 2010, 16 (24), 7125-7133.
5. Martínez, R.; Ramón, D. J.; Yus, M., Tetrahedron 2006, 62 (38), 8982-8987.
6. Li, H.; Wang, C.; Huang, H.; Xu, X.; Li, Y., Tetrahedron Lett. 2011, 52 (10), 1108-1111.
7. Li, B.; Guo, C.; Fan, X.; Zhang, J.; Zhang, X., Tetrahedron Lett. 2014, 55 (43), 5944-5948.
8. Zhang, X.; Xu, X.; Yu, L.; Zhao, Q., Tetrahedron Lett. 2014, 55 (14), 2280-2282.
9. Wang, R.; Fan, H.; Zhao, W.; Li, F., Org. Lett. 2016, 18 (15), 3558-3561.
10. Kouznetsov, V. V., Tetrahedron 2009, 65 (14), 2721-2750.
11. Warrener, R. N., J. Am. Chem. Soc. 1971, 93 (9), 2346-2348.
12. Gandeepan, P.; Rajamalli, P.; Cheng, C.-H., Asian J. Org. Chem. 2014, 3 (3), 303-308.
13. Lewgowd, W.; Stanczak, A., Arch. Pharm. 2007, 340 (2), 65-80.
14. Zhao, D.; Wu, Q.; Huang, X.; Song, F.; Lv, T.; You, J., Chem. Eur. J. 2013, 19 (20), 6239-6244.
15. Luo, R.; Liao, J.; Xie, L.; Tang, W.; Chan, A. S. C., Chem. Commun. 2013, 49 (85), 9959-9961.
16. Zhang, C.; Jiao, N., Angew. Chem. Int. Ed. 2010, 49 (35), 6174-6177.
17. Yu, G.; Han, C.; Zhang, Z.; Chen, J.; Yan, X.; Zheng, B.; Liu, S.; Huang, F., J. Am. Chem. Soc. 2012, 134 (20), 8711-8717.