簡易檢索 / 詳目顯示

研究生: 林均諭
Lin, Chun-Yu
論文名稱: 藉由電光取樣量測光電式兆赫波發射器之特性
Characterization of a THz Photonic Transmitter by Electro-Optic Sampling
指導教授: 潘犀靈
口試委員: 趙如蘋
黃衍介
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 97
中文關鍵詞: 電光取樣系統光電式兆赫波發射器毫米波
外文關鍵詞: Electro optic sampling system, Photonic transmitter, Millimeter wave
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的主要目的是利用電光取樣方式量測光電式兆赫波發射器包括其主要元件近彈道單載子光偵測器的輸出特性。
    為此,我們利用中心波長在1.56μm的鎖模摻鉺光纖雷射、碲化鋅電光晶體和平衡偵測器建立一套電光取樣系統。為了確定系統表現,首先我量測共平面波導上的縱向和橫向表面電場分布,並利用保角轉換模擬來應證電場的分布情形,接著利用微波梳狀產生器產生電脈衝訊號並傳輸在相同共平面波導上,並利用電光取樣的量測系統量測到脈衝寬度約110皮秒的訊號。最後,我們利用類似的系統量測到近彈道單載子光偵測器所產生的電脈衝訊號,在時域上會看到由多重反射所組成的訊號,而在頻域上會有中心頻率在26.65 GHz 和80 GHz的兩個頻段,前者是由多重反射所組成的週期現象,後者即為元件所產生的主要訊號,而多重反射的現象初步推測是由於量測系統的阻抗不匹配所造成的結果。最後比較利用電光取樣量測光偵測器的訊號與兆赫波發射器輻射出來的毫米波訊號,並發現此兩種訊號有一致的特性。


    The main purpose of my thesis is the characterization of a THz photonic transmitter (PT) and its main component a near-ballistic uni-traveling-carrier photodiode by using electro optic (EO) sampling.
    Here, we constructed an EO sampling system primarily composed of a Mode Locked Er: doped Fiber Laser at 1.56m, a ZnTe EO crystal, polarizing optics and a balanced detector. In order to verify the performance of this system, we first measure the distribution of transverse and longitudinal electric fields on a coplanar waveguide (CPW). The results are in agreement with theoretically predicted field distribution using the conformal transformation. Secondly, we measured the waveform of comb generated picosecond electric pulses propagating on CPW, with a pulse width of about 110ps. Finally, we characterized the waveform of electric pulses generated by the Near-Ballistic Uni-Traveling-Carrier Photodiode. There were multi-reflection signals in time domain. In the frequency domain, we can see that there are two bands one is at 26.65GHz and the other one is near 80GHz. The former one corresponded to the period of multi-reflected spurious signal. The 80GHz band, on the other hand, is the designed output of the PT. Multiple reflections are tentatively attributed by the impedance mismatch of the measured setup. Considering the loading effect, measured EO response of the photodiode is consistent with the sub-THz (millimeter wave) signal radiated from the PT.

    中文摘要 i Abstract ii 致 謝 iii Contents iv List of Figure vii List of Table xii Chapter1 Introduction 1 1.1 Background 1 1.2 Motivation 5 1.3 Organization of this thesis 8 Chapter2 Electro optic effect 10 2.1 Introduction 10 2.2 Principle 11 2.3 Modulators 12 2.3.1 Phase modulation 13 2.3.2 Amplitude modulation 14 2.4 Electro-Optic effect of nonlinear crystal 19 2.4.1 Simplification of EO coefficient 21 2.4.2 Electro optic effect of Zinc Telluride 22 Chapter3 Electro Optic sensing 31 3.1 Electric field distribution on CPW 31 3.2 Conformal transformation 40 3.2.1 Schwarz Transformation 42 3.2.2 Coplanar Waveguide(CPW) Model 43 3.3 Simulated Results of Conformal Mapping 45 Chapter4 Generation and Detection 51 4.1 Photonic generation of MMW by photonic transmitter 51 4.1.1 Principle of photodiodes 53 4.1.2 Principle of photoconductive antenna 59 4.1.3 The design of photonic transmitter 62 4.2 Electro Optic Sampling for detection 65 4.2.1 Time Domain Spectroscopy 66 4.2.2 Results of tested electric pulse 68 4.2.3 Results of signal generated by NBUTC-PD 73 Chapter5 Conclusion and Future work 84 5.1 Conclusion 84 5.2 Future work 85 Reference 86 Appendix : Application of MMW 91

    [1] Naoya Kukutsu, and Yuichi Kado, “Overview of Millimeter and Terahertz Wave Application Research.” NTT Microsystem Integration Laboratories, Vol. 7, No. 3, pp. 1-6, 2009 .
    [2] Ch. Fattinger and D. Griskowsky, “Point source Terahertz optics,” Appl. Phys. Lett. ,Vol. 53, No. 16, pp. 1480-1482, 1988 .
    [3] C. L. Lu, “Photonic Generation and Detection of Chirped Millimeter-Wave Signal by a W-Band Photonic Transmitter,”master thesis, NTHU, 2012.
    [4] Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu and X. C. Zhang, and J. F. Federici, “Coherent terahertz radiation detection : Direct comparison between free space electro optic sampling and antenna detection,” Appl. Phys. Lett. , Vol. 73, No. 4, pp. 444-446, 1988.
    [5] J. W. Shi, C. B. Huang and C. L. Pan, “Millimeter-wave photonic wireless links for very high data rate communication,” NPG Asia Materials, VOL. 3, pp. 41-48, 2011.
    [6] D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B, Vol. 67, pp. 379-390, 1998.
    [7] Justin J. Stambaugh, Roy K. Lee, and William H. Cantrell, “The 4 GHz Bandwidth Millimeter wave radar,” Lincoln Laboratory Journal, Vol. 19, No. 2, pp. 64-76, 2012.
    [8] T. Uno and H. Tabata, “In situ Measurement of Combustion Gas Using Terahertz Time Domain Spectroscopy Setup for Gas Phase Spectroscopy and Measurement of Solid Sample,” Jpn. J. Appl. Phys., Vol. 49, No. 4, pp. 04DL17 1-7, 2010.
    [9] J. Wells, “Faster than fiber: the future of multi-Gs/s wireless,” IEEE Microwave Mag. , Vol.10, No.3, pp.104-112, 2009.
    [10] H. Fuser, S. Eichstadt, K. Baaske, C. Elster, K. Kuhlmann, R. Judaschke, K. Pierz, and M. Bieler, “Optoelectronic time domain characterization of a 100 GHz sampling oscilloscope,” Meas. Sci. Technol., Vol. 23, pp. 025201-025210, 2012.
    [11] S. Seitz, M. Bieler, M. Spitzer, K. Pierz, G. Hein and U. Siegner, “Optoelectronic measurement of the transfer function and time response of 70 GHz sampling oscilloscope,” Meas. Sci. Technol., Vol.16, pp. L7-L9, 2005.
    [12] Robert B. Marcus, “Measurement of High Speed Signals on Solid State Device,” Semiconductors and Semimetals, Vol. 28, 1990.
    [13] A. Zeng, S. A. Shah, and M. K. Jackson, “Reduced invasiveness of noncontact electrooptic probes in Millimeter wave optoelectronic characterization,” IEEE Transaction on Microwave Theory and Technique, Vol. 44, No. 7, pp. 1155-1157 July 1996.
    [14] S. Seitz, M. Bieler, G. Hein, K. Pierz, U. Siegner et al, “Characterization of external electro-optic sampling probe: Influence of probe height on distortion of measured voltage pulses,” J. Appl. Phys., Vol. 100, pp. 113124-1-7, 2006.
    [15] B.E.A. Saleh and M.C. Teich, “Fundamentals of photonics,’’ Wiley Series in Pure and Applied Optics, 2007.
    [16] H. J. Tseng, “A study of submillimeter EM pulses with the electro-optical effect of ZnTe crystals,” master thesis, NTHU, 1998.
    [17] Yen-Chieh Huang, “Principles of Nonlinear optics course reader,” Institute of Phottonics Technologies NTHU, Hsinchu, Taiwan, 2012.
    [18] Kolner, Brian Howard, “Picosecond electro-optic sampling in Gallium-Arsenide,” Doctor thesis Stanford University, 1985.
    [19] Optical-field-autocorrelation-setup, Wikipedia, Avaliable: http://en.wikipedia.org/wiki/File:Optical-field-autocorrelation-setup.png.
    [20] Simon Ramo, John R. Whinnery, and Theodore Van Duzer, “Fields and waves in communication electronics,” Wiley 3rd, 1965.
    [21] Erik Carlsson, and Spartak Gevorgian, “Conformal mapping of field and charge distribution in multilayered substrate CPW’s,” IEEE Transaction on Microwave Theory and Techniques, Vol. 47, No. 8, pp. 1544-1552, 1999.
    [22] Z. H. Zhu, Y. H. Lo, M. C. Wu, C. L. Pan, S. Y. Wang, T. K. Gustafson and S. Wang, “Study of electric field distribution in GaAs materials and devices using electro-optic probing technique,” J. Electrochem. Soc., Vol. 136, No. 10, pp. 3115-3123, 1989.
    [23] Matthew Gillick, Ian D. Robertson, “Direct analytical solution for the electric field distribution at the conductor surfaces of coplanar waveguide,” Jai S. Joshi, IEEE Transaction on Microwave Theory and Techniques, Vol. 41, No. 1, pp. 129-135, 1993.
    [24] P. L. Liu, Keith J. Williams, Michael Y. Frankel, and Ronald D. Esman, “Saturation characteristics of fast photodetectors,” IEEE Transaction On Microwave Theory and Techniques, Vol. 47, No. 7, pp.1297-1303, 1999.
    [25] T. Nagatsuma, “Generating Millimeter and Terahertz waves,” IEEE microwave magazine, Vol.10, No. 4, pp. 64-74, 2009.
    [26] PIN diode, Wikipedia, Avaliable: http://en.wikipedia.org/wiki/PIN_diode.
    [27] A. Hirata, M. Harada, K. Sato, and T. Nagatsuma, “Low-cost millimeter-wave photonic techniques for Gigabit/s wireless link,” IEICE Trans. Electron., Vol. E86-C, No. 7, pp. 1123-1128, 2003.
    [28] T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, and T. Furuta, “Uni-traveling-carrier photodiodes,” Tech. Dig. Ultrafast Electron. Optoelectron., Vol. 13, pp.83–87, 1997.
    [29] N. Shimizu, N.Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaAs uni-traveling-carrier photodiode with improved 3-dB bandwidth of over 150 GHz,” IEEE Photon. Technol. Lett., Vol. 10, No. 3, pp. 412–414, 1998.
    [30] Y. H. Wu, “High-speed and high-power near-ballistic uni-traveling-carrier photodiode (NBUTC-PD) for the application of W-band radio-over-fiber (ROF) communication system,” master thesis, NCU, 2008.
    [31] N. Li, X. Li, S. Demiguel, H.Chen et al., “High saturation current charge compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Tech. Lett., Vol. 16, No. 3, pp.864-866, 2004.
    [32] T. J. Hung, J. W. Shi, S. H. Chen, Y. S. Wu, J. I. Chyi, and Ying-Jay Yang, “InP Based Transverse Junction Superluminescent Diodes with Extremely Wide Optical Bandwidth (>460nm),” 2005 Optics and Photonics Taiwan, Tainan, A1N-56085, 2005.
    [33] Y. S. Wu, J. W. Shi, and P. H. Chiu, “Analytical modeling of a high performance near-ballistic uni-traveling-carrier photodiode at a 1.55,” IEEE photon. Technol. Lett., Vol. 18, No. 8, pp. 938-940, 2006.
    [34] Jin-Wei Shi, Feng-Ming Kuo, and John E. Bowers, “Design and Analysis of Ultra High Speed Near-Ballistic Uni-Traveling-Carrier Photodiode under 50- Load for High Power Performance,” IEEE Photonics Technology Letters, Vol. 24, No. 7, pp. 533-535, 2012.
    [35] A. Ueda, T. Noguchi, H. Iwashita, Y. Sekimoto, M. Ishiguro, S. Takano, T. Nagatsuma, H. Ito, A. Hirata, and T. Ishibashi, “W-band waveguide photomixer using a uni-traveling-carrier photodiode with 2mw output,” IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 5, pp. 1455-1459, 2003.
    [36] S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photon. Technol. Lett., Vol. 15, No. 12, pp. 1761–1763, 2003.
    [37] Yun-Shik Lee, “Principle of Terahertz Science and Technology,” Chapter3 Generation and Detection of broadband Terahertz pulses, 2009.
    [38] F. M. Kuo, C. B. Huang, J. W. Shi, N. W. Chen, H. P. Chuang, John E. Bowers, and Ci Ling Pan, “Remotely up-converted 20-Gbit/s error-free wireless on-off keying data transmission at W-band using an ultra-wideband photonic transmitter mixer,” IEEE Photonics Journal, Vol. 3, No. 2, pp. 209-219, 2011.
    [39] N. W. Chen, H. J. Tsai, F. M. Kuo, and J. W. Shi, “High speed W band integrated photonic transmitter for radio over fiber applications,” IEEE Trans. Microw. Theory Tech., Vol. 59, No. 4, pp. 978-986, 2011.
    [40] H. J. Tsai, N. W. Chen, F. M. Kuo, and J. W. Shi, “Front-end design of W band integrated photonic transmitter with wide optical to electrical bandwidth for wireless- over-fiber application,” in Proc. IEEE Microw. Theory Tech. Int. Microw. Symp., Anaheim, CA, pp. 740-743, 2010.
    [41] Myung-ha, Kuh, “The Gunn Diode,” Department of ECE university of California, May, 2002.
    [42] OOK, google picture, Avaliable: http://sitelec.org/cours/abati/domo/transport.htm
    [43] J. W. Lin, H. P. Chuang, F. M. Kuo, C. H. Lin, Tze-An Liu, Jin-Wei Shi, Chen-Bin Huang, and Ci-Ling Pan, “ Enhanced performance of narrowband Millimeter-wave generation using shaped pulse excited photonic transmitter,” IEEE Photonic Technology Letters, Vol. 23, No. 13, pp.902-904, 2011.
    [44] A. Hirata, T. Kosugi, N. Meisl, T. Shibata, and T. Nagatsuma, “High directivity photonic emitter using photodiode module integrated with HEMT amplifier for 10 Gbit/s wireless link,” IEEE Trans. Microwave Theory Tech., Vol. 52, No. 8, pp.1843-1850, 2004.
    [45] A. Hirata, H. Ishii, and T. Nagatsuma, “Design and characterization of millimeter wave antenna for integrated photonic transmitter,” Microwave Theory Tech., Vol. 49, No. 11, pp. 2157-2162, 2001.
    [46] Nen-Fu Huang, “Local area network and high speed network,” June, 1998
    [47] Chi-Wai Chow, “Optical fiber communication,” April, 2011
    [48] C. W. Chow, F. M. Kuo, J. W. Shi, C. H. Yeh, Y. F. Wu, C. H. Wang, Y. T. Li, C. L. Pan, “100GHz ultra wideband (UWB) fiber to the antenna (FTTA) system for in building and in home networks,” Opt. Express, Vol. 18, No. 2, pp. 473-478, 2010.
    [49] N. W. Chen, J. W. Shi, H. J. Tsai, J. M. Wun, F. M. Kuo, Jeffery Hesler, Thomas W. Crowe, and John E. Bowers, “Design and demonstration of ultra fast W-band photonic transmitter-mixer and detectors for 25Gbits/sec error-free wireless linking,” Opt. Express, Vol. 20, No. 19, pp. 21223-21234, 2012.
    [50] J. W. Shi, F. M. Kuo, C. J. Wu, C. L. Chang, Cheng-Yi Liu, Cheng Yu Chen, and Jen-Inn Chyi, “Extremely high saturation current-bandwidth product performance of a Near Ballistic Uni Traveling Carrier Photodiode with a flip chip bonding structure,” IEEE J. Quantum Electron., Vol. 46, No. 1, pp. 80-86, 2010.
    [51] Keith Willox, “Q factor: The wrong answer for service providers and NEMs,” Agilent Technologies, 2002.
    [52] S. Seitz, M. Bieler, G. Hein, K. Pierz, U. Siegner, F. J. Schmuckle, and W. Heinrich, “Correction of picosecond voltage pulses measured with external electro-optic sampling tips,” Meas. Sci. Technol., Vol. 18, pp. 1352-1360, 2007.
    [53] D. S. Phatak, and A. P. Defonzo, “Dispersion characteristics of optically excited coplanar striplines: pulse propagation,” IEEE Transaction On Microwave Theory And Techniques,” Vol. 38, No. 5, pp. 654-661, 1990.
    [54] S. Gupta, J. F. Whitaker, and G. A. Mourou, “Subpicosecond pulse propagation on coplanar waveguides: experiment and simulation,” IEEE Microwave and Guided wave letters, Vol. 1, No. 7, pp. 161-163, 1991.
    [55] John F. Whitaker, Theodore B. Norris, G. Mourou, Thomas Y. Hsiang, “Pulse dispersion and shaping in microstrip lines,” IEEE Transaction on Microwave Theory and Techniques, Vol. MTT-35, No. 1, pp. 41-47, 1987 .

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE