簡易檢索 / 詳目顯示

研究生: 蔡明耀
Ming-Yao Tsai
論文名稱: Quantum Electronic Transport in Molecular Junction and Carbon Nanotube Field-Effect Transistors
指導教授: 柳克強
Keh-Chyang Leou
許正餘
Jang-Yu Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 140
中文關鍵詞: 量子傳輸分子接面奈米碳管電晶體非平衡系統非平衡格林函數多體物理Keldysh方程式多粒子物理Dyson方程式費曼圖格林函數
外文關鍵詞: Quantum Transport, Molecular Junction, Carbon Nanotube Field-Effect Transistors, Many-Body Physics, Keldysh Formulation, Many-Particle Physics, Dyson's Equation, Feynman's Diagram, Green's Function
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 走到世紀交會之處,科技的發展已獲得空前的成就,其中又以半導體科技的發展最為顯著。而今,半導體科技已經接近熱力學極限,似乎是在催促我們找尋新的次世代電晶體,以取代現有的金氧半電晶體,猶如金氧半電晶體取代當年的真空管電晶體一般。自1995年C. Joachim等人利用STM探針量測碳六十分子電性之後[1],1997年M. A. Reed等人更成功製造直接跨過金屬接點的分子元件 [2]。隔年,第一個奈米碳管電晶體也被製作出來[3][4],自此分子電晶體與奈米碳管電晶體似乎成為取代半導體的熱門候選之一。在經過無數實驗過程而不斷有所進展之際,其相關理論的分析也進行的如火如荼,但是那些理論結果卻與實驗結果有所出入,並且引發許多對於傳輸機制的爭議。故此,倘若要更進一步改進奈米級電晶體,對其機制必須充分瞭解是相當重要的。筆者藉此以第一原理(First Principle)與非平衡格林函數(Nonequilibrium Green’s Function)試對分子電晶體與奈米碳管電晶體進行理論分析與模擬,並且試圖尋找當中更基本、更直觀的傳輸機制,希望能對分子電晶體與奈米碳館電晶體的研究有所貢獻。


    In the beginning of the New Age, the development of technology was more rapid than the other ages, specifically the semiconductor technology. Today, nonstop scale-down devices are approaching the limit of thermodynamics. It implies that researchers need to search new transistors which have innovative structure. These innovative transistors could replace MOS-transistors, like MOS replaced vacuum tubes. The study of electron transport through single molecules has evolved thanks to C. Joachim et al, who measured the current through C60[1], and M. A. Reed et al who fabricated molecule that are suspended on metal contacts[2]. In the following year, first carbon nanotube field-effect transistors (CNTFETs) had been fabricated [3][4]. Therefore, the molecular transistor is one among several of the next generation transistors. At the same time theoretical efforts have been made to describe and understand the experiments. Actually, theoretical and experimental results had showed errors. Furthermore, some theories which talk about transport have provoked a great deal of controversy. Consequently, if researchers want to improve nanotransistors, they would need to understand the transport theory. In this thesis, I have simulated the properties of hydrogen molecular junction and CNTFETs ab initio. In addition to this, I attempt to understood their transport mechanism.

    中文摘要 viii Abstract ix 中文誌謝 x Table of Contents xxiv List of Tables xxvi List of Illustrations xxvii List of Symbols xxxi CHAPTER 1 INTRODUCTION 1 CHAPTER 2 GREEN’S FUNCTION METHOD 6 2.1 Introduction 6 2.2 Creation Operators and Annihilation Operators 12 2.3 The Schr□dinger, Heisenberg and Interaction Picture 19 2.4 Green’s Function and Grand Canonical Ensemble 29 2.5 Time-Loop S Matrix and Six Green’s Function 40 2.6 Other Fundamental Formulation 46 2.6.1 Dyson’s equation 46 2.6.2 Langreth Theorem 47 2.6.3 Keldysh Formulation 50 2.6.4 Spectral Function 53 2.6.5 Retard Self-Energy Due to Lead 59 CHAPTER 3 QUANTUM ELECTRONIC TRANSPORT 61 CHAPTER 4 LITERATURE REVIEWS 73 4.1 Molecular Junction 73 4.2 Carbon Nanotube Field-Effect Transistors 79 CHAPTER 5 TRANSPORT IN HYDROGEN MOLECULAR JUNCTION 83 5.1 Methodology 83 5.2 Results and Discussion 88 CHAPTER6 TRANSPORT IN CNTFETs 106 6.1 Introduce Carbon Nanotubes 106 6.2 Methodology 112 6.3 Result 116 CHAPTER7 CONCLUSION AND FUTUREWORK 122 7.1 Hydrogen Molecular Junction and Hydrogen Atomic Junction 122 7.2 The CNTFETs 126 REFERENCE 131 Appendix: Matlab Code 133

    [1] C. Joachim et al, “Electronic Transparence of a Single C60 Molecule”, Phys. Rev. Lett. 74, 2102 (1994).
    [2] M. A. Reed et al, “Conductance of a Molecular Junction”, Science, 278, 252 (1997).
    [3] S. J. Tans, A. Verschueren, and C. Dekker, ”Room-temperature transistor based on a single carbon nanotube”, Nature 393, 49 (1998).
    [4] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and Ph. Avouris, ”Single- and multi-wall carbon nanotube field-effect transistors”, Appl. Phys. Lett. 73, 2447 (1998).
    [5] J. Kempner, C. S. Perlis and J. F. Merz, “Forbidden Knowledge”, Science, 307, 854 (2005)
    [6] A.W. Ghosh, P.S. Damle, S. Datta, and A. Nitzan, “Molecular Electronics: Theory and Device Prospects”, MRS Bulletin 29, 391 (2004).
    [7] Morris Kline, Mathematical Thought from Ancient to Modern Times (Oxford University Press, Oxford, 1972).
    [8] Gerald D. Mahan, Many-Particle Physics, 3rd (Kluwer Academic / Plenum Publishers, New York, 2000).
    [9] J.J.Sakurai, Modern Quantum Mechanics (Addison-Wesley, New York, 1994).
    [10] John W. Negele et al, Quantum Many-Particle System (Addison-Wesley, New York, 1988).
    [11] E. N. Economou, Green’s Functions in Quantum Physics, 2nd (Springer, New York, 1983).
    [12] Alexandre M. Zagoskin, Quantum Theory of Many-Body Systems: Techniques and Applications (Springer, New York, 1998).
    [13] Richard P. Feynman, Statistical mechanics: a set of lectures (Addison-Wesley, New York, 1998).
    [14] H. Hang et al, Quantum Kinetics in Transport and Optics of Semiconductors (Springer, New York, 1996).
    [15] Yigal Meir and Ned S. Wingreen, ”Landauer formula for the current through an interacting electron region”, Phys. Rev. Lett. 68, 2512 (1994).
    [16] Kao-Chin Lin, The Quantum Electronic Transport in Strong Correlation Quantum Dot System (Ph.D Thesis, Nat. Chiao-Tung Univ., Taiwan, 2005).
    [17] Supriyo. Datta, Electronic Transport in Mesoscopic System (U.K. Cambridge Univ. Press, Cambridge, 1995).
    [18] Supriyo. Datta, Quantum Transport: Atom to Transistor (U.K. Cambridge Univ. Press, Cambridge, 2005).
    [19] Antti-Pekka Jauho et al, “Time-dependent transport in interacting and noninteracting resonant tunneling systems”, Phys. Rev. B, 50, 5528 (1994).
    [20] Ferdows Zahid et al, “Electrical Conduction through Molecules”, Phys. Rev. B, 70, 245317 (2004).
    [21] S. Doniach and E. H. Sondheimer, Green’s Functions for Solid State Physicists (Imperial College Press, London, 1998).
    [22] C. Joachim et al, “Electronics using hybrid-molecular and mono-molecular devices”, Nature, 408, 541 (2000).
    [23] P. S. Damle et al, “Unified description of molecular conduction: From molecules to metallic wires”, Phys. Rev. B, 64, 201403 (2001).
    [24] Supriyo Datta et al, “Current-Voltage Characteristics of Self-Assembled Monolayers by Scanning Tunneling Microscopy”, Phys. Rev. Lett., 97, 2530 (1997).
    [25] J. Guo, et al, “A Numerical Study of Scaling Issues for Schottky-Barrier Carbon Nanotube Transistors”, IEEE Trsns. Electron devices, 51, 172, (2004).
    [26] Supriyo Datta, “Nanoscale device modeling: the Green’s function method”, Superlattices and Microstructures, 25, 253 (2000).
    [27] K. S. Thygesen and K. W. Jacobsen, “Conduction Mechanism in a Molecular Hygregen Contact”, Phys. Rev. Lett., 94, 036807 (2005).
    [28] J. Taylor, H. Gou and J. Wang. “Ab initio modeling of quantum transport properties of molecular electronic devices”, Phys. Rev. B, 63, 245407 (2001).
    [29] R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press. London, 1998).
    [30] S. Reich, C. Thomsen, J Maultzsch, Carbon Nanotubes Basic concepts and physical properties (Weinheim Wiley, Cambridge, 2004).
    [31] T. S. Jespersen, Raman Scattering in Carbon Nanotubes, (Master thesis, Niels Bohr Institute, Copenhagen Univ., Denmark, 2003).
    [32] M.S. Dresselhaus, G. Dresselhaus, et al, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Springer, New York, 2002).
    [33] J.Tersoff, “Schottky Barrier Height and Continuum of Gap States”, Phys. Rev. Lett., 52, 465 (1984).
    [34] Wind, S. et al, “Scaling of Single-Wall Carbon Nanotubes Transistors Using Top Gate Electrodes”, Appl. Phys. Lett. 80, 3817 (2002).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE