簡易檢索 / 詳目顯示

研究生: 林素妃
Lin, Su-Fei
論文名稱: 微波水熱合成二氧化鈦於光催化與光電化學之應用
Microwave Hydrothermal Synthesis of Titanium Dioxide for Photocatalytic and Photochemical Applications
指導教授: 胡啟章
Hu, Chi-Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 125
中文關鍵詞: 二氧化鈦微波水熱
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要研究利用微波水熱法合成純相之銳鈦礦晶相(anatase)二氧化鈦,先以實驗設計法得到控制結晶顆粒成長條件要素,接著製備出不同結晶顆粒大小之二氧化鈦,探討不同結晶顆粒大小二氧化鈦之光催化行為,最後再對聚集成團之二氧化鈦粒子進行分散,測試其光電化學行為。材料分析方面,利用X光繞射儀(XRD)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)分析觀察其結構組成、結晶顆粒大小、表面型態、及微結構,及利用氮氣之吸脫附曲線測其比表面積及孔洞分佈。
    首先以六價鈦離子硫酸水溶液為前驅物,用全因素實驗設計法控制結晶顆粒之成長,根據實驗結果可瞭解影響結晶顆粒成長主要因素包含:溫度、硫酸濃度(pH值)、及持溫時間,隨後欲尋找更大與更小二氧化鈦結晶顆粒,以最陡升途徑實驗法調整溫度及持溫時間因素,得到控制結晶顆粒大小範圍由4 nm至15 nm。
    接下來,選取四種微波水熱條件(提供瓦數:100 w;反應溫度:120 oC、140 oC、160 oC、190 oC;持溫時間:1分、4分15秒、5分30秒、15分),合成四種不同結晶顆粒之二氧化鈦,以XRD估算其結晶顆粒大小,分別為4.5、8.0、11.5、及15 nm,經上述一些材料分析分析其性質,接著再應用於照光分解亞甲基藍(MB)來測其光催化活性,而光降解結果為隨著結晶顆粒粒徑變大,光催化活性越好。而結晶顆粒最大的15 nm其結晶性最好,照射紫外光後能激發電子躍上導帶的數目多,因而其光催化活性表現最好。
    而因微波水熱合成奈米級二氧化鈦易生聚集現象,此章節成功利用二氧化鈦硝酸溶液經微波水熱(100 w、80 oC、2小時)之酸處理分散聚集之二氧化鈦,並測試光電化學行為。分散前後光電壓由-0.33 V增至-0.4 V,光電流也由4.7×10-6 A 增至1.5×10-5 A,因分散後粒子分佈較均勻,提高對光線之吸收效率,且孔洞體積增大(直徑由3.8 nm增至23 nm)利於電解質進出接觸二氧化鈦粒子之表面,能快速調適維持電荷平衡,因而使更多電子被激發跳上導帶,傳送至導線被接收偵測,而大大提升光電壓及光電流。


    中文摘要 i Abstract iii 目錄 vi 圖目錄 x 表目錄 xiv 第一章 緒論與文獻回顧 1 1-1 前言 1 1-2 論文大綱與研究動機 2 1-3 觸媒與半導體基本原理 6 1-4 光觸媒催化反應基本原理 8 1-5 TiO2奈米光觸媒之物理性質 9 1-6 TiO2奈米光觸媒之光化學催化反應 13 1-7 實驗設計法 17 1-7-1 前言 17 1-7-2 全因素實驗設計法 18 1-7-3缺適度的檢驗 19 1-8 微波系統 22 第二章 實驗方法與儀器簡介 27 2-1 儀器與藥品 27 2-1-1儀器 27 2-1-2 藥品 28 2-2 微波實驗流程及電極之前處理與製備 29 2-2-1 微波實驗流程 29 2-2-2 電極之前處理與製備 32 2-3 光降解有機污染物 34 2-4 材料分析儀器與原理簡介 37 2-4-1 X光繞射分析(X-ray diffraction analysis, XRD) 37 2-4-2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 38 2-4-3 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 38 2-4-4 N2吸脫附曲線 39 第三章 利用24全因素實驗設計法控制結晶顆粒成長 42 3-1 前言 42 3-2 實驗設計法之參數設定 42 3-3 24全因素實驗設計法 43 3-4 變異數分析 (analysis of variance , ANOVA) 48 3-5 陡升途徑(steepest ascent)之結晶顆粒控制 57 3-6 結論 60 第四章 微波水熱合成TiO2之材料分析與光催化應用 61 4-1 前言 61 4-2 二氧化鈦材料之製備 61 4-3 二氧化鈦之材料分析 63 4-3-1 X光繞射之分析 63 4-3-2 FE-SEM之表面分析 66 4-3-3 TEM之微結構分析 69 4-3-4 N2吸脫附曲線之表面積與孔洞分析 74 4-4 二氧化鈦光降解亞甲基藍之應用 77 4-5 結論 81 第五章 TiO2之分散與光電化學探討 82 5-1 前言 82 5-2 微波水熱法分散二氧化鈦之實驗流程與分析 82 5-3 微波水熱法分散二氧化鈦之材料分析 86 5-3-1 二氧化鈦合成過程之分散 86 5-3-2 二氧化鈦二次粒子之分散 90 5-3-3 分散二氧化鈦之XRD分析 94 5-3-4 分散二氧化鈦之TEM分析 96 5-3-5 分散二氧化鈦之N2吸脫附曲線分析 98 5-4 光電化學影響之探討 100 5-4-1 鈦片基材之光電化學空白試驗 100 5-4-2 分散前後二氧化鈦之光電化學影響 102 5-4-3 不同厚度二氧化鈦之光電化學影響 105 5-4-4 不同結晶顆粒大小二氧化鈦之光電化學影響 110 5-5 結論 114 第六章 總結與未來展望 116 6-1 總結 116 6-2 未來展望 119 參考資料 120

    [1] A. Fujishima, K. Honda, Nature, 238 (1972) 37.
    [2] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Nature, 388 (1997) 431.
    [3] A. Mills and M.A. Valenzuela, Rev. Mex. Fis., 50 (2004) 287–296.
    [4] A. Kudo, Catalysis Surveys from Asia, 7 (2003) 31-38.
    [5] R. Fretwell and P. Douglas, Photochem. Photobiol. Sci., 1 (2002) 793–798.
    [6] S. Palmasa, A.M. Polcaroa, J. Rodriguez Ruiza, A. Da Pozzoa, A. Vaccaa, M. Masciaa, F. Delogua, P.C. Ricci, International Journal of Hydrogen Energy, 34 (2009) 9662-9670.
    [7] N. L. Wu, M. S. Lee, Z. J. Pon, J. Z. Hsu, J. Photochem. Photobiol. A, 163 277-280(2004).
    [8] N. L. Wu, M. S. Lee, Int. J. Hydrogen Energy, 29 1601-1605(2004).
    [9] A. Fujishima, K. Hashimoto, and T. Watanabe, Badger Kennel Club (1999) 124-126.
    [10] L. C. Chen and T. C. Chou, Ind. Eng. Chem. Res., 33 (1994) 1436.
    [11] Z. Zhang, C. Wang, R. Zakaria, J.Y. Ying, J. Phys. Chem. B 102 (1998) 10871.
    [12] M. Toyoda, Y. Nanbu, Y. Nakazawa, M. Hirano, M. Inagaki, Appl. Catal. B, 49 (2004) 227.
    [13] S. Y. Chae, M. K. Park, S. K. Lee, T. Y. Kim, S. K. Kim, and W. I. Lee, Chem. Mater., 15 (2003) 3326.
    [14] S. Liu, N. Jaffrezic, C. Guillard, Applied Surface Science, 255 (2008) 2704.
    [15] M. Fujishira, Y. Satoh, and T. Osa, Nature, 17 (1981).
    [16] K. Vinodgopal, S. Hotchandani and P. V. Kamat, J. Phys. Chem ., 97 (1993) 9040.
    [17] A.P. Rivera, K. Tanaka, T. Hisanaga, Appl. Catal. B, 3 (1993) 37–44.
    [18] D. S. Kim, S. J. Han, S. Y. Kwak, J. Colloid Interface Sci., 316 (2007) 85.
    [19] R. Gedye, F. Smith, K. Westaway, H. Ali, L. Baldisera, L. Laberge, J. Rousell, Tetrahedron Lett., 27 (1986) 279.
    [20] S. Deshayes, M. Liafre, A. Loupy, Tetrahedron, 55 (1999) 10851.
    [21] S. Komarnenia, R. K. Rajhaa, H. Katsuki, Materials Chemistry and Physics, 61 (1999) 50-54.
    [22] M. Tsuji, M. Hashimoto, T. Tsuji, Chem. Lett., (2002) 1232.
    [23] G. Ma, X. Zhao, J. Zhu, Int. J. Mod. Phys. B, 17 ( 2005) 2763.
    [24] T. Suprabha, H. G. Roy, J. Thomas, K. P. Kumar, Suresh Mathew, Nanoscale Res Lett, 4 (2009) 144.
    [25] 李定粵,「觸媒的原理與應用」,正中出版社 (1999)。
    [26] A. Hagfeldt, and M. Gratzel, Chem. Rev., 95 (1995) 49-68.
    [27] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, Journal of the American Chemical Society, 114 (1992) 10834–10843.
    [28] 蕭宏,「半導體製程技術導論」,台灣培生教育出版, (2002)。
    [29] M. R. Hoffman, S. T. Martin, W. Y. Choi and D. W. Bahneman, Chem. Rev., 95 (1995) 69-95.
    [30] T. Hiroshi,「光觸媒圖解」,商周出版, (2003)。
    [31] D. W.Park, S. M. Oh, S. S. Kim, J. E. Lee, and T. Ishigaki, Thin Solid Films, 453 (2003) 252-258.
    [32] X. Q. Gong, A. Sellonl, M. Batzill, and U. Dieblod, Nature Materials, 5 (2006) 665-670.
    [33] M. GraÈtzel, J. Photochem. Photobiol. A: Chem., 164 (2004) 3.
    [34] J. Yang, S. Mei, J. M. F. Ferreira, Mater. Sci. Eng., 15 (2001) 183.
    [35] C. C. Hu, C. C. Huang, K. H. Chang, Electrochemistry Communications 11 (2009) 434–437.
    [36] S. Seifried, M. Winterer, H. Hahn, Chem. Vap. Deposition, 6 (2000) 239.
    [37] A. C. Pierre, G. M. Pajonk, Chem. Rev., 102 (2002) 4243.
    [38] E. Borgarello, J. Kiwi, M. Gratzel, E. Pelizzetti, and M. Visca, Journal of the American Chemical Society, 104 (1982) 2996-3002.
    [39] H. Yamashita, H. Nishiguchi, N. Kamada, M. Anpo, Research on Chemical Intermediates, 20 (1994) 815-823.
    [40] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem Rev., 95 (1995) 69-96.
    [41] A. L. Linsebigler, G. Lu, and J. T. Yates, Chemical Reviews, 95 (1995) 735-758.
    [42] M. S. Vohra and K. Tanaka, Water Research, 36 (2002) 3992-3996.
    [43] website:http://www.photocatalyst-aon-net.com.
    [44] G. A. Eqling and C. Lin, Chemosphere, 46 (2002) 561-570.
    [45] A. Yasumori, K. Ishizu, S. Hayashi, and K. Okada, Journal of Materials Chemistry, 8 (1998) 2521-2524.
    [46] L. P. Childs, Studied in photoassisted heterogeneous catalysis:rate equation for 2-methyl-2-butyl alcohol and isobutane oxidation and degradation of trichloroethylene and chloroform in dilute aqueous suspensions of titanium-dioxide, PhD Dissertation, Princeton University (1980).
    [47] E. Oliveros, O. Legrini, M. Hohl, T. Muller, A. Braum, Chem. Eng. Process, 36 (1997) 397-405.
    [48] G. E. P. Box, W. G. Hunter, J. S. Hunter, Wiely, New York, (1978) 374-433.
    [49] D. C. Montgomery, John Wiely & Sons, Inc., Singapore (1997).
    [50] 科安企業股份有限公司, 「聚焦微波化學反應系統」,(2006).
    [51] M. Pourbaix,“Atlas of Electrochemical Equilibria in Aqueous Solutions”, National Association of Corrosion Engineers, Houstion, Texas, USA,1996.
    [52] A. Pottier, C. Chaneac, E. Tronc, L. Mazerroles, J. Jolivet, J. Mater. Chem., 11 (2001) 1116.
    [53] A. Mills and J. Wang., J. Photochem. Photobio. A , 127 (1999) 123.
    [54] H. F. Lin, S. C. Liao, and S. W. Hung, Journal of Photochemistry and Photobiology A, 174 (2005) 82-87.
    [55] Y. Yang, Q. Wu, Y. Guo, C. Hu, E. Wang, J. Molecular Catalysis. A, 225 (2005) 203.
    [56] G. Ertl, H. Knözinger, J. Weitkamp, “ Handbook of Heterogeneous Catalysis ”, VCH D-69451 Weinheim, 3 (1997) 1508.
    [57] R. W. Matthews, J. Phys. Chem., 91 (1987) 3328.
    [58] 黎正中,「實驗設計與分析」, 高立圖書,( 2006), Chap. 6.
    [59] B. R. Sankapal, M. Ch. Lux-Steiner, and A. Ennaoui, Appl. Surf. Sci., 239 (2005) 165.
    [60] D. C. Montgomery, John Wiely & Sons, Inc., Singapore (1997).
    [61] 李光亮,「有機矽高分子化學」, 科學出版社,(1998).
    [62] X. Huang, C. Pan, Journal of Crystal Growth, 306 (2007) 117–122.
    [63] 郭幸宜,「陽極沉積釕鈦複合氧化物於超級電容器之應用」 國立中正大學化工研究所碩士論文,(2009).
    [64] K. H. Park, E. M. Jin, H. B. Gu, S. E. Shim, C. K. Hong, Materials Letters, 63 (2009) 2208–2211.
    [65] S. Ito, T. Kitamura, Y. Wada, S. Yanagida, Solar Energy Materials & Solar Cells, 76 (2003) 3–13.
    [66] 梁加宏,「溶膠凝膠法製備TiO2/ITO光電極及其在產氫程序上之應用」,國立成功大學化工研究所碩士論文,(2008).
    [67] A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, J. Am. Chem. Soc., 130 (2008) 4007-4015.
    [68] T. Yoko, L. Hu, H. Kozuka, S. Sakka, Thin Solid Films, 283 (1996) 188-195.
    [69] M. Takahashi, K. Tsukigi, T. Uchino, and T. Yoko, Thin Solid Films, 388 (2001) 231-236.
    [70] M. Kozlowski and W. H. Smyrl, Electrochemical Acta, 34 (1989) 1763-1768.
    [71] T. Yoko, A. Yuasa, K. Kamiya, and S. Sakka, J. Electrochem. Soc., 138 (1991) 2279-2285.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE