簡易檢索 / 詳目顯示

研究生: 趙文軒
Chao, Wen-Hsuan
論文名稱: 表面電漿子增益摻鈰釔鋁柘榴石薄膜螢光效益研究
Enhanced Emission for Ce Doped Y3Al5O12 Thin Film Phosphor by Surface Plasmon Coupling
指導教授: 吳泰伯
Wu, Tai-Bor
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 132
中文關鍵詞: 表面電漿子效應薄膜螢光粉摻鈰釔鋁柘榴石固態照明濺鍍
外文關鍵詞: Surface plasmon coupling, Thin film phosphor, YAG:Ce, Solid-state lighting, Sputtering
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 黃光系列之釔鋁石榴石摻雜鈰螢光粉配合藍光發光二極體,做為高效率之白光光源,開啟了白光LED應用於照明的開端,因為它們獨特的性質而引發廣泛的興趣和研究。在發光二極體照明用的螢光粉的應用上,螢光粉薄膜提供了很多在製造白光照明系統製造的優點及好處,而且也能較方便整合到發光二極體元件內。然而,螢光粉薄膜的發光效率被認為較低於粉末的螢光粉,主要的原因在於大量的光被陷在發光層內,導致低的外部發光效率。因此有效地將光從材料中萃取出來成為研究的主要課題。
    本研究利用射頻濺鍍,在室溫下使用釔鋁石榴石摻雜鈰螢光粉薄膜沉積在石英基板,研究其表面狀態、結構特性、組成及發光特性。從實驗的結果可以發現在濺鍍製程所通的濺鍍氣體的氧偏壓及射頻的功率參數明顯地影響Al/Y的原子比例、成膜速率、結晶狀態及發光的特性。在高溫及室溫的狀態下,濺鍍成膜,所通入濺鍍氣體的氧偏壓會對釔鋁石榴石摻雜鈰螢光粉薄膜的組成會產生差異。當通入濺鍍氣體為純氬氣的情況下,鍍製的釔鋁石榴石摻雜鈰螢光粉薄膜,經退火處理之後,可以獲得較接近計量比及多晶狀態的YAG:Ce 薄膜。同樣地,成膜速率也遠高於濺鍍氣體內含有氧氣的條件。YAG:Ce 薄膜使用氮氣氣氛退火所獲得光致發光的發光強度較高於空氣氣氛退火,主要原因在於退火氣氛為氮氣可以阻止Ce3+氧化。另外也發現在1100 oC溫度下退火,YAG:Ce 薄膜的穿透率仍然可維持在75%,此一螢光薄膜在未來有潛力應用於太陽能電池之光轉換材料,而在1200 oC溫度下退火,由石英基板產生SiO2結晶,導致穿透率降低。
    這個研究的結果進一步顯示表面電漿子耦合效應能夠有效地增益釔鋁石榴石摻雜鈰螢光粉薄膜的發光強度,藉由運用不同金屬島狀薄膜 (銀、鋁、金)來探討表面電漿子耦合效應對黃光釔鋁石榴石摻雜鈰螢光粉薄膜的發光特性的影響,在銀、鋁及金的島狀薄膜的研究中,尤其以銀的島狀薄膜在奈米級厚度下,可以增益黃光釔鋁石榴石摻雜鈰螢光粉薄膜的發光強度10倍,其明顯的增益的原因在於黃光釔鋁石榴石摻雜鈰螢光粉薄膜發光與表面電漿子耦合產生共振及在金屬島狀間產生的入射光電場效應。藉由改變及調控金屬沉積層的厚度及退火條件使其形成島狀結構,當銀金屬層的厚度為20nm時,其島狀結構的平均長度、寬度及長寬比分別為418.2nm、159nm及2.9,可獲得最高的PL強度,所以黃色的發光強度可藉由控制島狀金屬的奈米結構去匹配螢光粉薄膜的表面電漿子耦合條件而被增益,而且從實驗的結果也發現到在銀的島狀結構上覆蓋一層10nm的介電層可以再進一步明顯地增加黃光釔鋁石榴石摻雜鈰螢光粉薄膜的PL強度。
    Since blue LEDs emit light with a wavelength shorter than the green ones, it is possible to excite a suitable and intense yellow light-emmitting phosphor that can complement the blue emission to yield ideal white light. Out of all the phosphor LEDs involved, Ce doped yttrium-aluminate-garnet phosphor was found to be the most suitable satisfactorily tested on GaN LEDs for the production of white light. In LED-phosphor-lighting applications, thin-film type phosphors offer advantages in the fabrication of white lighting systems, and can be more conveniently integrated with LEDs and arrays of LEDs than can the powder type. However, the emission efficacy of a thin-film phosphor is considerably lower than that of powdered phosphor, indicating that a large amount of light is trapped inside the luminescent layer, leading to low external efficiency. Therefore, effective extraction of light from the material has become a major issue of study.
    This work investigated structural and luminescent properties of YAG:Ce (Ce doped Y3Al5O12) thin films grown on quartz at room temperature by rf magnetron sputtering. We found that oxygen partial pressure in sputtering gas and rf power strongly affect the Al/Y atomic ratio, growth rate, crystallinity and luminescent properties of YAG:Ce films. The effect of the O2/(Ar+O2) ratio on the composition prepared at room temperature differs from that prepared at high temperatures. The growth rate of YAG:Ce films deposited at the gas ratio of O2/(Ar+O2) = 0% was significantly enhanced. Stoichiometric and polycrystalline YAG:Ce films were obtained in pure Ar. YAG:Ce films that were annealed in N2 have a higher photoluminescence (PL) emission intensity than those annealed in air because annealing in N2 prevents Ce3+ from oxidation. We also found that transparency of YAG:Ce/quartz annealed at 1100 oC is still maintained, and YAG:Ce thin film has a transmittance of 75% including the substrate in the visible region. The phosphor film post-treated at 1100□C potentially could be used as luminescence conversion materials for application in solar cells due to their good transparency. Annealing at temperatures above 1200 oC results in formation of SiO2 crystalline phase. The sample annealed at 1200 oC has much lower transmittance but higher PL intensity than those samples annealed at 1100 oC.
    Surface plasmon coupling aiming to enhance the yellow emission of YAG:Ce thin-film phosphors was also verified experimentally in this study. Among Ag, Al and Au layers, the emission intensity of YAG:Ce thin-film phosphor by coating a silver layer with a thickness of nanometers was significantly enhanced by ten-fold. The enormous enhancement on PL is attributable to the resonant coupling of emission in YAG:Ce with a surface plasmon (SP) and the electric field of incident light at the metal interfaces. The mass thickness and annealing conditions can be varied to transform the Ag layer into an island-like structure. The PL intensity is highest at an Ag thickness 20 nm which transforms into island of length: 418.2 nm, width: 159 nm, aspect ratio: 2.9, in average. Therefore, yellow emission was enhanced by tuning the matching conditions of thin film phosphor-SP coupling by controlling the structure of silver nano-islands. The PL intensity can be further and remarkably enhanced by capping Ag islands with a 10 nm-thick SiO2 layer as a dielectric medium.


    Contents Abstract I 摘要 III 致謝 V List of Table IX List of Figure X Chapter 1: Introduction 1 1.1 Prelude 1 1.1.1 The development of white light emitting diodes (LEDs) 1 1.1.2 Problem with LED-phosphor Lighting 7 1.2 Motivation and Objectives of Research 9 Chapter 2: Background of The Study 12 2.1 Introduction to YAG phosphor 12 2.2 Emission Theory of the YAG Phospor[38] 15 2.2.1 Absorption and Excitation of the Phosphor 15 2.2.2 Fluorescence and Nonradiative Transfer 18 2.2.3 Luminescence Spectrum of the YAG:Ce phosphor 19 2.2.4 Application of the YAG:Ce phosphor 24 2.2.5 Thin film phosphor of YAG:Ce 24 2.3 Theory of Surface Plasmon (SP) 26 2.3.1 Surface Plasmon on Smooth Surfaces 26 2.3.2 Localized Surface Plasmon 31 2.3.2.1 Scattering by a Small Metal Sphere 31 2.3.2.2 Size Effect in Dielectric Function of Metals[46,70] 37 2.4 Literature Review 39 Chapter 3: Experimental Procedures 45 3.1 Preparation of YAG:Ce Thin Film Phosphors and Spacers Layer 45 3.2 The Fabrication of Metal Island Films and Dielectric Layer 47 3.3 Structural Analysis 47 3.3.1 X-ray Diffraction (XRD) Analysis 47 3.3.2 Scanning Electron microscope (SEM) 47 3.4 Thickness Measurement 49 3.5 Transmission and Absorption and Measurement 49 3.6 Photoluminescence Measurement 49 3.7 Surface Analysis 50 3.7.1 X-ray Photoelectron Spectroscopy (XPS) 50 3.7.2 Surface Morphology 50 Chapter 4: Structural and Luminescent Properties of YAG:Ce Thin Film Phosphor 52 4.1 Introduction 52 4.2 Experimental Procedures 54 4.3 Results and Discussion 56 4.4 Summary 73 Chapter 5: Surface plasmon-enhanced emission from metal-island-coated YAG:Ce thin film phosphor 76 5.1 Introduction 76 5.2 Experimental Procedures 78 5.3 Results and Discussion 80 5.4 Summary 100 Chapter 6: Surface plasmon-enhanced emission from Ag-coated YAG:Ce thin films phosphor capped with a dielectric layer of SiO2 101 6.1 Introduction 101 6.2 Experimental Procedures 103 6.3 Results and Discussion 105 6.4 Summary 117 Chapter 7: Summary and Conclusions 119 Chapter 8: Future Prospects 121 References 124 List of Table Table 3.1 Sputtering condition of the YAG:Ce layer and SiO2 layer. 46 Table 3.2 Annealing condition of the YAG:Ce layer. 46 Table 3.3 Sputtering condition of various metal layers (Ag, Al, and Au) and the dielectric layer Au. 48 Table 3.4 Annealing condition in vacuum. 48 Table 4.1 FWHM and crystalline size of YAG:Ce film with different annealing temperature. 64 Table 5.1 The length and width of the silver-island films with various mass thicknesses 87 Table 5.2 The density of the silver-island films with various mass thicknesses 87 List of Figure Figure 1.1 Live applications of light emitting diodes. [1] 2 Figure 1.2 Luminous efficiency of visible-spectrum LEDs and other light sources with elapse time. [1] 3 Figure 1.3 LED-based and LED-plus-phosphor-based approaches for white light source. [8] 5 Figure 2.1 The phase diagram of Y2O3-Al2O3 system. [36] 13 Figure 2.2 The element cell structure and material properties of Y3Al5O12 phosphor. [37] 14 Figure 2.3 Energy transform diagram of excitation energy. 16 Figure 2.4 Configuration coordinate diagram of the phosphor. 17 Figure 2.5 Diagram of Stokes shift. 20 Figure 2.6 Nonradiative transitions in the configurational coordinate diagram:(a) weak coupling, (b) medium coupling, and (c) strong coupling. 21 Figure 2.7 Energy level diagram and absorption/ fluorescence spectra of YAG: Ce at 295K. [39] 22 Figure 2.8 Energy level scheme of the Ce3+ ion: SO:spin-orbit coupling, D: crystal field effect. 23 Figure 2.9 Schematic of the charges and the electromagnetic field of SP propagating on a surface in the x direction. The exponential dependence of the field Ez is also shown on the inset. [57] 28 Figure 2.10 The dispersion relation of nonradiative SPs. [57] 29 Figure 2.11 Configuration of ATR method. (a) Otto configuration, (b) Kretschmann-Raether configuration. 32 Figure 2.12 The propagation length of different metals in the SP mode. [60] 33 Figure 2.13 Schematic of plasma oscillation for a sphere. [64] 34 Figure 3.1 Photograph of photoluminescence measurement instrument. 51 Figure 4.1 The flow chart of the experimental procedure. 55 Figure 4.2 Sample structure under both pump light and emission light configurations. 57 Figure 4.3 Al/Y atomic ratio in YAG:Ce thin film phosphors deposited at rf powers with gas ratios of O2/(Ar+O2) = 0% and 50% 58 Figure 4.4 XRD patterns of YAG:Ce films deposited at the gas ratios of O2/(Ar+O2) = 0% and 50% at rf power of 300 W, following annealing at 1100 °C for 10 h in an atmosphere of N2. 61 Figure 4.5 Excitation and emission spectra of YAG:Ce deposited at the gas ratios of O2/(Ar+O2) = 0%, and 50%. 62 Figure 4.6 XRD patterns of YAG:Ce films that were annealed at temperatures from 800 to 1200 oC for 10 h in an atmosphere of N2. 65 Figure 4.7 Transmittance spectra of YAG:Ce films that were annealed at temperatures from 800 to 1200 oC for 10 h in an atmosphere of N2. The inset shows photograph of YAG:Ce films annealed at 1100 oC for 10 h in an atmosphere of N2. 66 Figure 4.8 (a) PL spectra of YAG:Ce films that were annealed at temperatures from 800 to 1200 oC for 10 h in an atmosphere of N2. (b) PL spectra of YAG:Ce thin films that were annealed in air and N2 atmosphere. 69 Figure 4.9 SEM photographs of YAG:Ce thin films that were annealed in air (a) and N2 (b). 71 Figure 4.10 XRD patterns of YAG:Ce thin films that were annealed in air and N2. 72 Figure 4.11 XPS spectra of Ce 3d electron in YAG:Ce thin films that were annealed in air and N2. Open and closed circles plot experimental and fitted results, respectively. 75 Figure 5.1 The flow chart of the experimental procedure. 79 Figure 5.2 Sample structure under both pump light and emission light configurations. 81 Figure 5.3 Typical PL spectra of YAG:Ce thin-film phosphor coated with silver, aluminum or gold layer, and of one without any metal layer. The inset shows the PL spectra of Ag-coated samples at various SiO2 spacer thicknesses. 82 Figure 5.4 Surface plasmon dispersion relations of Ag/YAG:Ce (open square), Al/YAG:Ce (open circle), and Au/YAG:Ce (open triangle). The emission band of YAG:Ce (solid circle) is presented. 84 Figure 5.5 SEM photographs of Ag-coated YAG:Ce at various Ag mass thicknesses, (a) 3 nm; (b) 5 nm; (c) 10 nm; (d) 20 nm; (e) 50 nm. 88 Figure 5.6 Absorption spectra of (a) Ag/quartz at various Ag mass thicknesses; (b) Al/quartz at various Al mass thicknesses; (c) Au/quartz at various Au mass thicknesses. 91 Figure 5.7 The reflection spectra of Au/quartz at Au mass thicknesses of 20nm and 50nm, respectively. 96 Figure 5.8 PLE spectra detected at 545nm for YAG:Ce thin-film phosphor coated with silver and of one without any metal layer. 97 Figure 5.9 Enhancement factor of PL intensity at 545nm for Ag capped YAG: Ce thin film phosphor as a function of excitation wavelength. 98 Figure 5.10 PL intensities of metal-coated samples as functions of metal thickness. 99 Figure 6.1 The flow chart of the experimental procedure. 104 Figure 6.2 PL spectra of YAG:Ce thin film phosphor separated from silver layer by 3 nm-thick SiO2 spacers. 106 Figure 6.3 Surface plasmon dispersion relations of Ag/air, Ag/SiO2 and Ag/YAG. Emission band of YAG:Ce is shown. 109 Figure 6.4 AFM images of morphology of Ag-coated YAG:Ce with Ag mass thickness of 20 nm. 112 Figure 6.5 The enhancement factor of PL intensities at 545nm for Ag capped YAG:Ce thin film phosphor as a functions of Ag thickness. 113 Figure 6.6 PL spectra of silver-coated samples that were coated with a 10 nm-thick SiO2 layer. 115 Figure 6.7 Absorption spectra of films with Ag-islands deposited on quartz substrate that were coated with a 10 nm-thick SiO2 layer. 116

    References

    1. E. F. Schubert, Light-Emitting Diodes, Cambridge University Press, New York, p. 15 (2006).
    2. Jr. N. Holonyak and S. F. Bevacqua, Appl. Phys. Lett. 1, 82 (1962).
    3. S. Nakamura, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys. 32, L8 (1993).
    4. S. Nakamura, M. Senoh, and T. Mukai, Appl. Phys. Lett. 62, 2390 (1993).
    5. S. Nakamura, M. Senoh, and T. Mukai, U.S. Pat. 5306662 (1994).
    6. S. Nakamura, M. Senoh, and T. Mukai, Appl. Phys. Lett. 64, 1687 (1994).
    7. I. Akasaki, H. Amano, K. Itoh, N. Koide, and K. Manabe, Inst. Phys. Conf. Ser. 129, 851 (1992).
    8. 康佳正、劉如熹、廖秋峰, 工業材料雜誌, 232, 141 (2006).
    9. J. H. Wold and A. Valberg, Color Res. Appl. 26, S222 (2000).
    10. I. Moreno, and U. Contreras, Opt. Express 15, 3607 (2007).
    11. E. F. Schubert and J. K. Kim, Science 308, 1274 (2005).
    12. 劉如熹、紀喨勝, ”紫外光發光二極體用螢光粉介紹”, 全華科技, p. 1 (2003)。
    13. Y. Pan, M. Wu, and Q. Su, Mater. Sci. Eng. B 106, 251 (2004).
    14. M. Veith, S. Mathur, A. Kareiva, M. Jilavi, M. Zimmer and V. Huch, J. Mater. Chem. 9, 3069 (1999).
    15. Y. Zhou, J. Lin, M. Yu, S. Wang, and H. Zhang, Mater. Lett. 56, 628 (2002).
    16. Y. Lin, Z. Zhang, Z. Tang, X. Wang, J. Zhang, and Z. Zheng, J. Eur. Ceram. Soc. 21, 683 (2001).
    17. E. Zych, W. Goetz, N. Harrit, H. Spanggaard, J. Alloy. Compd. 380, 113 (2004).
    18. Y. Q. Li, G. de With, and H. T. Hintzen, J. Alloy. Compd. 385, 1 (2004).
    19. Y. Q. Li, C. M. Fang, G. de With, and H.T. Hintzen, J. Solid State Chem. 177, 4687 (2004).
    20. T. Suehiro, N. Hirosaki, R. J. Xie, and M. Mitomo, Chem. Mater. 17, 308 (2005).
    21. J. W. H van Krevel, H. T. Hintzen, R. Metselaar, and A. Meijerink, J. Alloy. Compd., 268, 272 (1998).
    22. X. Piao, T. Horikawa, H. Hanzawa, and K. Machida, Chem. Lett. 35, 334 (2006).
    23. 趙文軒、葉耀宗、吳仁傑、黃天□、王麗萍, 工業材料雜誌, 240, 115 (2006).
    24. D. Haranath, H. Chander, P. Sharma, and S. Singh, Appl. Phys. Lett. 89, 173118 (2006).
    25. K. Bando, K. Sakano, Y. Noguchi, and Y. Shimizu, J. Light & Vis. Environ. 22, 2 (1998).
    26. R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, IEEE J. Sel. Top. Quantum Electron. 8, 339 (2002).
    27. 陳秋伶、黃勝邦、高弘毅, 工業材料雜誌, 208, 124 (2004).
    28. 李巡天, 工業材料雜誌, 258, 196 (2008).
    29. J. Y. Choe, Mater. Res. Innov. 6, 238 (2002).
    30. R. B. Mueller-Mach, and G. O. Mueller, U.S. Pat. 7183577 B2 (2007).
    31. W. L. Barnes, Nat. Mater. 3, 588 (2004).
    32. K. G. Cho, D. Kumar, D. G. Lee, S. L. Jones, P. H. Holloway, and R. K. Singh, Appl. Phys. Lett. 71, 3335 (1997).
    33. T. Aisaka, M. Fujii, and S. Hayashi, Appl. Phys. Lett. 92, 132105 (2008).
    34. S. Geller, and M. A. Gilleo, Acta crystallogr. 10, 239 (1957).
    35. J. E. Geusic, and L. G. Van Uitert, Appl. Phys. Lett. 4, 182 (1964).
    36. C. K. Ullal, K. R. Balasubramaniam, A. S. Gandhi, and V. Jayaram, Acta Mater. 49, 2691 (2001).
    37. 余昭蓉,”摻加稀土元素鋁酸釔螢光體之合成與特性鑑定”, 國立交通大學應用化學研究所, 碩士論文 (1997)。
    38. G. Blasse, and B.C. Grabmaier, Luminescent Materials, Springer-Verlag, Berlin Heidelberg, p. 28 (1994).
    39. R. R. Jacobs, W. F. Krupke, and M. J. Weber, Appl. Phys. Lett. 33, 410 (1978).
    40. D. Jia, R. S. Meltzer, and W. M. Yen, J. Lumines. 99, 1 (2002).
    41. E. J. Bosze, G. A. Hitrata, L. E. Shea-Rohwer, and J. McKittrick, J. Lumines. 104, 47 (2003).
    42. Y. C. Kang, I. W. Lenggoro, S. B. Park, and K. Okuyama, Mater. Res. Bull. 35, 789 (2000).
    43. S. Lee, and S. Y. Seo, J. Electrochem. Soc. 149, J85-J88 (2002).
    44. J. H. Yum, S. Y. Seo, S. Lee, and Y. E. Sung, J. Electrochem. Soc. 150, H47-H52 (2003).
    45. J. W. Kim, and Y. J. Kim, Opt. Mater. 28, 698 (2006).
    46. P. N. Prasad, Nanophotonics, Wiley, New Jersey, p. 129 (2004).
    47. R. H. Ritchie, Phys. Rev. 106, 874 (1957).
    48. C. J. Powell, and J. B. Swan, Phys. Rev. 118, 640 (1960).
    49. K. Sokolov, G. Chumanov, and T. M. Cotton, Anal. Chem. 70, 3898 (1998).
    50. J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, J. Phys. D: Appl. Phys. 36, R240 (2003).
    51. C. D. Geddes, and J. R. Lakowicz, J. Fluoresc. 12, 121 (2002).
    52. M. H. Chowdhury, K. Ray, K. Aslan, J. R. Lakowicz, and C. D. Geddes, J. Phys. Chem. 111, 18856 (2007).
    53. Y. Zhang, K. Aslan, and M. J. R. Previte, Appl. Phys. Lett. 90, 173116 (2007).
    54. A. Barnett, E. G. Matveeva, I. Gryczynski, Z. Gryczynski, and E. M. Goldys, Physica B 394, 297 (2007).
    55. M. H. Chowdhury, K. Ray, C. D. Geddes, and J. R. Lakowicz, Chem. Phys. Lett. 452, 162 (2008).
    56. S. A. Maier, Plasmonics: Fundamentals and Applications, Springer, New York, p. 21 (2007).
    57. 吳民耀、劉威志,物理雙月刊, 28, 486 (2006).
    58. H. Raether, Surface Plasmon on Smooth and Rough Surface and on Grating, Springer, Berlin, p. 5 (1988).
    59. 邱國斌、蔡定平, 物理雙月刊, 28, 472 (2006).
    60. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
    61. R. W. Wood, Proc. Phys. Soc. London 18, 166 (1902).
    62. R. H. Ritchie, Surf. Sci. 34, 1 (1973).
    63. 王俊凱, 工業材料雜誌, 190, 124 (2002).
    64. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).
    65. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley-Interscience, New York (1983).
    66. C. F. Bohren, Am. J. Phys. 51, 323 (1983).
    67. D. M Schaadt, B. Feng, and E. T. Yu, Appl. Phys. Lett. 86, 063106 (2005).
    68. H. R. Stuart, and D. G. Hall, Appl. Phys. Lett., 73, 3815 (1998).
    69. U. Kreibig, and M. Vollmer, Optical Properties of Metal Clusters, Wiley, New York (1995).
    70. S. Kawata, Near-Field Optics and Surface Plasmon Polaritons, Springer, New York, p. 98 (2001).
    71. W. H. Chao, R. J. Wu, and T. B. Wu, J. Alloy. Compd, Revised (2010).
    72. T. W. Ebbesen, H. J. Lezec, H. F. Ghasemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
    73. U. Schroter, and D. Heitmann, Phys. Rev. B 58, 15419 (1998).
    74. S. C. Kitson, W. L. Barnes, and J. R. Sambles, Phys, Rev. Lett. 77, 2670 (1996).
    75. W. T. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, Phys. Rev. B 54, 6227 (1996).
    76. G. W. Ford, and W. H. Weber, Phys. Rep. 113, 195 (1984).
    77. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, Chem. Phys. Lett. 26, 163 (1974).
    78. J. F. Garcia-Vidal, and J. B. Pendry, Phys. Rev. Lett. 77, 1163 (1996).
    79. N. E. Hecker, R. A.Höpfel, N. Sawaki, T. Maier, and G. Strasser, Appl. Phys. Lett. 75, 1577 (1999).
    80. S. Gianordoli, R. Hainberger, A.Kock, N. Finger, E. Gornik, C. Hank, and L. Korte, Appl. Phys. Lett. 77, 2295 (2000).
    81. J.Vuckovic, M. Loncar, and A. Scherer, IEEE J. Qunt. Elec. 36, 1131 (2000).
    82. P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, Adv. Mater. 14, 1393 (2002).
    83. I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, Phys. Rev. B 60, 11564 (1999).
    84. A. Neogi, C. W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, phys. Rev. B 66, 153305 (2002).
    85. K. Okamoto, I. Niki, A. Shvsrtser, Y. Narukawa, T. Mukai, and A. Scherer, Nat. Mater. 3, 601 (2004).
    86. K. Okamoto, I. Niki, A. Shvartser, G. Maltezos, Y. Narukawa, T. Mukai, Y. Kawakami, and A. Scherer, Phys. Stat. Sol. (a) 204, 2103 (2007).
    87. K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, Appl. Phys. Lett. 87, 071102 (2005).
    88. K. Okamoto, I. Niki, A. Shvartser, G. Maltezos, Y. Narukawa, T. Mukai, K. Nishizuka, Y. Kawakami, and A. Scherer, Proc. of SPIE 5733, 94 (2005).
    89. R. Paiella, Appl. Phys. Lett. 87, 111104 (2005).
    90. C. W. Lai, J. An, and H. C. Ong, Appl. Phys. Lett. 86, 251105 (2005).
    91. W. H. Ni, J. An, C. W. Lai, H. C. Ong, and J. B. Xu, J. Appl. Phys. 100, 026103 (2006).
    92. H. C. Ong, D. Y. Lei, and J. Li, Proc. of SPIE 6474, 64740V-1 (2007).
    93. P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, Appl. Phys. Lett. 92, 041119 (2008).
    94. J. B. You, X. W. Zhang, Y. M. Fan, Z. G. Yin, P. F. Cai, and N. F. Chen, J. Phys. D: Appl. Phys. 41, 205101 (2008).
    95. X. Li, Y. Zhang, and X. Ren, Opt. express 17, 8735 (2009).
    96. T. D. Neal, K. Okamoto, and A. Scherer, Opt. Express 13, 5522 (2005).
    97. T. D. Neal, K. Okamoto, A. Scherer, M. S. Liu, and A. K. Y. Jen, Appl. Phys. Lett. 89, 221106 (2006).
    98. H. J. Park, D. Vak, Y. Y. Noh, B. Lim, and D. Y. Kim, Appl. Phys. Lett. 90, 161107 (2007).
    99. Y. J. Hung, I. I. Smolyaninov, and C. C. Davis, Opt. Express 14, 10825 (2006).
    100. J. H. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, Nano Lett. 5, 1557(2005).
    101. A. G. Brolo, S. C. Kwok, M. D. Cooper, M. G. Moffitt, C. W. Wang, R. Gordon, J. Riordon, and K. L. Kavanagh, J. Phys. Chem. B 110, 8307 (2006).
    102. K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M.G. Bawendi, Phys. Rev. Lett. 89, 117401 (2002).
    103. K. Okamoto, S. Vyawahare, and A. Scherer, J. Opt. Soc. Am. B 23, 1674 (2006).
    104. D. K. Gifford, and D. G. Hall, Appl. Phys. Lett. 80, 3679 (2002)
    105. K. Y. Yang, K. C. Choi, and C. W. Ahn, Appl. Phys. Lett. 94, 173301 (2009).
    106. P. A. Hobson, S.Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, Adv. Mater. 14, 1393 (2002).
    107. X. Wu, M. H. Chowdhury , C. D. Geddes, K. Aslan, R. Domszy, J. R. Lakowicz, and A. J. M. Yang, Thin Solid Films 516, 1977 (2008).
    108. J. Feng, T. Okamoto, R. Naraoka, and S. Kawata, Appl. Phys. Lett. 93, 051106 (2008).
    109. T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. V. Duyne, J. Phys. Chem. B 104, 10549 (2000).
    110. G. Xu, M. Tazawa, P. Jin; S. Nakao, and K. Yoshimura, Appl. Phys. Lett. 82, 3811 (2003).
    111. T. Kojima, in: S. Shionoya, and W. M. Yen (Ed.), Phosphor Handbook, CRC Press, New York, p. 628 (1998).
    112. E. Zych, C. Brecher, and H. Lingertat, J. Lumines. 78, 121 (1998).
    113. M. K. Ashurov, A. F. Rakov, and R. A. Erzin, Solid State Commun. 120, 491 (2001).
    114. M. S. Scholl, and J. R. Trimmier, J. Electrochem. Soc. 133, 643 (1986).
    115. P. Schlotter, R. Schmidt, and J. Schneider, Appl. Phys. A 64, 417 (1997).
    116. J. H. Yum, S. S. Kim, and Y. E. Sung, Colloid Surf. A-Physicochem. Eng. Asp. 251, 203 (2004).
    117. K. Wasa, and S. Hayakawa, Handbook of Sputter Deposition Technology, Noyes, New Jersey, p. 52 (1992).
    118. J. B. Lounsbury, J. Vac. Sci. Technol. 6, 838 (1969).
    119. J. M. Grace, D. B. McDonald, M. T. Reiten, J. Olson, R. T. Kampwirth, and K. E. Gray, J. Vac. Sci. Technol. A 10, 1600 (1992).
    120. A. Hamerich, R. Wunderlich, and J. Muller, J. Vac. Sci. Technol. A 12, 2873 (1994).
    121. S. M. Chung, S. H. Han, and Y. J. Kim, Mater. Lett. 59, 786 (2005).
    122. D. H. Kuo, and W. R. Chen, Thin Solid Films 497, 65 (2006).
    123. C. Hammond, the Basics of Crystallography and Diffraction, Oxford, New York, p. 181 (2001).
    124. A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, Prog. Photovolt: Res. Appl. 12, 113 (2004)
    125. L. T. Su, A. I. Y. Tok, F. Y. C. Boey, X. H. Zhang, J. L. Woodhead, and C. J. Summers, J. Appl. Phys. 102, 083541 (2007).
    126. M. Veith, S. Mathur, A. Kareiva, M. Jilavi, M. Zimmer, and V. Huch, J. Mater. Chem. 9, 3069 (1999).
    127. D. R. Mullins, S. H. Overbury, and D. R. Huntley, Surf. Sci. 409, 307 (1998).
    128. G. O. Mueller, and R. Mueller-Mach, Proc. of SPIE 4776, 122 (2002).
    129. R. Mueller-Mach, and G. O. Mueller, Proc. of SPIE 3938, 30 (2000).
    130. Y. Q. Li, J. E. J. van Steen, J. W. H. van Krevel, G. Botty, A. C. A. Delsing, F. J. DiSalvo, G. de With, and H. T. Hintzen, J. Alloy. Compd. 417, 273 (2006).
    131. R. Mueller-Mach, G. Mueller, M. R. Krames, H. A. Höppe, F. Stadler, W. Schnick, T. Juestel, and P. Schmidt, Phys. Stat. Sol. (a) 202, 1727 (2005).
    132. D. W. Lynch and W. R. Hunter, in: E. D. Palik (Ed.), Handbook of Optical Constants of Solids, Academic, San Diego, p. 350 (1985).
    133. D. Y. Smith, E. Shiles, and Mitio Inokuti, in: E. D. Palik (Ed.), Handbook of Optical Constants of Solids, Academic, San Diego, p. 370 (1985).
    134. D. W. Lynch and W. R. Hunter, in: E. D. Palik (Ed.), Handbook of Optical Constants of Solids, Academic, San Diego, p. 286 (1985).
    135. W. J. Tropf, in: E. D. Palik (Ed.), Handbook of Optical Constanst of Solids III, Academic, San Diego, p. 963 (1998).
    136. A. Liebsch, Phys. Rev. Lett. 71, 145 (1993).
    137. M. Guerrisi, R. Rosei, and P. Winsemius, Phys. Rev. B 12, 557 (1975).
    138. W. H. Chao, R. J. Wu, C. S. Tsai, and T. B. Wu, J. Electrochem. Soc. 156, J370 (2009).
    139. H. R. Philipp, in: E. D. Palik (Ed.), Handbook of Optical Constanst of Solids, Academic, San Diego, p. 749 (1985).
    140. D. Evans, Phys. Rev. B 32, 4169 (1985)
    141. K. W. Liu, Y. D. Tang, C. X. Cong, T. C. Sum, A. C. H. Huan, Z. X. Shen, L. Wang, F. Y. Jiang, X. W. Sun, and H. D. Sun, Appl. Phys. Lett. 94, 151102 (2009).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE