簡易檢索 / 詳目顯示

研究生: 戴建平
Tai, Chien-Ping
論文名稱: 應用於小型風力發電系統之最大功率追蹤控制晶片設計
Design of Maximum-Power-Point-Tracking Control IC for Small-Scale Wind Power Generation Systems
指導教授: 陳新
Chen, Hsin
口試委員: 陳科宏
潘晴財
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 108
中文關鍵詞: 最大功率追蹤風力發電系統類比電路最佳轉矩控制法
外文關鍵詞: MPPT, Wind power generation systems, Analog circuit, Optimal-torque-control method
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年油電雙漲與環保議題熱門,世界各國積極研發替代性能源,在考慮都市空間限制與噪音問題下,垂直型小型風力發電系統成為分散式潔淨能源選擇之一。為了增加系統效率與降低成本情況下,國內外許多文獻致力於開發最大功率追蹤(MPPT) 演算法,本論文主要探討最大功率追蹤演算法及其實現方式。風力發電系統其電壓電流特性會隨著環境中風速或溫度等特性呈非線性變化,若能給予適當的操作電壓與電流,便能達到較好的發電功率,「最佳轉矩控制法」可在不同的風速下,追蹤至最大功率值,且追蹤速度相較於其他演算法更快,本論文主要研究「最佳轉矩控制法」,將其改良並實現成晶片。
    本論文主要貢獻在於:提出「具空氣密度適應性最佳轉矩控制法」,補償傳統最佳轉矩控制法無法隨空氣密度變化而追蹤至最大功率點的問題,並利用模擬與微處理器實驗演算法在風速穩態情形可行性。另外,為了符合現實大氣中風速動態變化特性,進一步探討更快追蹤至最大功率點的「改良型動態轉矩控制法」,以模擬驗證風速變化情況下可有效追蹤更多功率,並以類比電路方式將演算法實現成系統晶片。晶片採用TSMC CMOS0.18m 製程,操作電壓在1.8V,晶片佈局面積1.963*1.538mm2,總晶片消耗功率約1.5mW。實驗結果顯示,以此晶片帶入風機系統模擬功率轉換效率可達27.7%,相較於理想轉換效率28.1%,誤差為1.42%。


    The price of gas and electricity has increased rapidly in recent years, so do environmental protection attract more and more attention. Many countries are encouraging the development of alternative and renewable energy sources. Under the concern of space limitation and noise reduction in a city, the vertical, small-scale wind power generation system turns out to be a good option for distributed clean energy sources. In order to increase the system’s overall efficiency, as well as to decrease the cost, many maximum-powerpoint-tracking (MPPT) algorithms have been proposed in literatures. This thesis aims to identify MPPT algorithms suitable for wind-power generation and to implement the algorithms as a microsystem on a chip. In a windpower generation system, the operating voltage and operating current are nonlinearly dependent on the wind speed and the temperature. By controlling the operating voltage and current optimally, the energy-generation efficiency can be boosted greatly. The optimal-torque-control method is able to track MPPT much faster than other algorithms when the wind speed varies continuously. However, the optimal torque control could track the wrong maximum power point as the air density (environment) changes. Therefore, this thesis investigates the feasibility of improving the optimal-torque-control method and realizing the algorithms as a microsystem on a chip.
    The major contributions of this thesis are described as follows. “An optimal torque control method with self-adaptability to environmental changes” is developed and verified by both simulation and implementation in a microprocessor. Taking into account the fact that the wind speed changes dynamically and continuously, this thesis further adopts the “dynamic optimal torque control (DOTC) method”to track maximum power point fast and reliably as wind speed changes. After verifying the capability of the DOTC method in simulation, this DOTC algorithm is further realized as a microsystem with analog integrated circuits. The microsystem is designed and fabricated with the TSMC CMOS 0.18m process. The power supply voltage is 1.8V. Total chip layout area is 1.963*1.538mm2 and it consumes less than 1.5mW. The experimental results reveal that the microsystem achieves a power-conversion coefficient of 27.7%, compatible with the ideal powerconversion coefficient of 28.1%, and the error is merely 1.42%.

    誌謝 I 中文摘要 III 英文摘要 V 目錄 VII 圖目錄 XI 表目錄 XVII 第一章 緒論 1 1.1 研究動機 1 1.2 論文貢獻 2 1.3 論文章節概述 2 第二章 文獻回顧 5 2.1 小型風力發電系統簡介 5 2.2 最大功率點追蹤控制方法介紹 8 2.2.1 擾動觀察法 9 2.2.2 比較斜率法 10 2.2.3 類神經網路與模糊邏輯控制法 11 2.2.4 最佳轉矩控制法 11 2.3 總結 12 第三章 具空氣密度適應性最佳轉矩控制法研究 15 3.1 空氣密度對最佳轉矩控制法影響 15 3.2 具自動調變能力最佳轉矩控制法架構介紹 16 3.2.1 演算法設計介紹 16 3.2.2 偵測功率最大值 17 3.2.3 計算的k值需介於特定區域值 19 3.3 模擬結果 19 3.4 微處理器硬體實測平台 22 3.4.1 功率級電路 25 3.4.2 電壓電流感測電路 25 3.4.3 DSP 數位訊號處理器 28 3.5 實測結果 29 3.6 總結 34 第四章 改良型動態最佳轉矩控制法研究與晶片實現 35 4.1 動態最佳轉矩控制法演算法運作原理 35 4.1.1 感測風機轉速 37 4.1.2 風機輸入轉矩估測器 37 4.1.3 動態補償增益 40 4.2 動態最佳轉矩控制法系統模擬結果 42 4.3 動態最佳轉矩控制法晶片系統架構介紹 45 4.3.1 最佳轉矩控制法電路架構 47 4.3.2 動態補償電路架構 47 4.3.3 演算法電路參數對照 48 4.4 各子電路介紹與電路模擬結果 51 4.4.1 感測週期電路 51 4.4.2 電壓電流轉換器 58 4.4.3 電流乘法器 60 4.4.4 比例積分器 69 4.4.5 脈衝寬度調變器 71 4.5 總電路模擬結果 75 第五章 晶片量測結果 81 5.1 晶片佈局與規格 81 5.2 晶片量測平台 82 5.3 晶片功能驗證 84 5.3.1 感測週期電路量測 84 5.3.2 電壓電流轉換器量測 87 5.3.3 各乘法器量測結果 89 5.3.4 脈衝寬度調變器量測結果 93 5.3.5 晶片系統量測結果 95 第六章 結論及未來研究方向 103 6.1 結論 103 6.2 未來研究方向 104 參考文獻 105 附錄 晶片腳位說明 109

    [1] E. Koutroulis and K.Kalaitzakis, “Design of maximum power tracking system for wind-energy-conversion applications,” IEEE Trans. Ind. Electron.,vol. 53, no. 2, pp. 486–494, 2006.
    [2] R. Datta and V. T. Ranganathan, “A method of tracking the peak power points for a variable speed wind energy conversion system,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 163–168, Mar. 2003.
    [3] M. G. Simoes, B. K. Bose, and R. J. Spiegel, “Design and performance evaluation of a fuzzy-logic-based variable-speed wind generation system,” IEEE Transactions on Industry Applications, vol. 33, no. 4, pp. 956–965, July/August 2001.
    [4] M. Pucci and M. Cirrincione, “Neural mppt control of wind generators with induction machines without speed sensors,” IEEE Trans. Ind. Electron., vol. 58, pp. 37–47, 2011.
    [5] A. M. Knight and G. E. Peters, “Simple wind energy controller for an expanded operation range,” IEEE Trans. Energy Convers., vol. 20, no. 2, pp. 459–466, Jun. 2005.
    [6] S. Morimoto, H. Nakayama, M. Sanada, and Y. Takeda, “Sensorless output maximization control for variable-speed wind generation system using ipmsg,” IEEE trans. Ind. Applicat., vol. 41, no. 1, pp. 60–67, Jan./ Feb. 2005.
    [7] S. M. R. Kazmi, H. Goto, H. J. Guo, and O. Ichinokura, “A novel algorithm for fast and efficient speed-sensorless maximum power point tracking in wind energy conversion systems,” IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, vol. 58, no. 1, pp. 29–36, Jan. 2011.
    [8] M. F. Tsai, W. C. Hsu, T. W. Wu, and J. K. Wang, “Design and implementation of an fpga-based digital control ic of maximum-powerpoint- tracking charger for vertical-axis wind turbine generators,” Power Electronics and Drive Systems, pp. 764–769, Nov. 2009.
    [9] C. T. Pan and Y. L. Juan, “A novel sensorless mppt controller for a highefficiency microscale wind power generation system,” IEEE TRANSACTIONS ON ENERGY CONVERSION, vol. 25, no. 1, pp. 207–216, Mar. 2010.
    [10] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems. New Jersey: Prentice Hall, 2002.
    [11] V. Agarwal, R. K. Aggarwal, P. Patidar, and C. Patki, Robust Adaptive Control. Prentice Hall, 1996.
    [12] Z. Lubosny, Wind Turbine Operation in Electric Power Systems: Advance modeling. Berlin Heidelberg: Spinger-Verlag, 2003.
    [13] M. Karrari, W. Rosehart, and O. P. Malik, “Comprehensive control strategy for a variable speed cage machine wind generation unit,” IEEE Trans. Energy Convers., vol. 20, no. 2, pp. 415–423, Jun. 2005.
    [14] C. C. Lu and T. S. Lee, “A 10-bit 60-ms/s low-power cmos pipelined analog-to-digital converter,” IEEE Transactions on Circuits and Systems, vol. 54, no. 8, pp. 658–662, Aug. 2007.
    [15] P. E. Allen, CMOS Analog Circuit Design. Cygnal Integrated Products, Inc., 2002.
    [16] A. Panigrahi and P. K. Paul, “Design of four quadrant analog cmos multiplier in subthreshold region,” European Journal of Scientific Research, vol. 50, no. 3, pp. 289–299, Mar. 2011.
    [17] G. Han and E. Sanchez-Sinencio, “Cmos transconductance multipliers: A tutorial,” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS XII: ANALOG AND DIGITAL SIGNAL PROCESSING, vol. 45, no. 12, pp. 1550–1563, Dec. 1998.
    [18] Z. Wang, “A cmos four-quadrant analog multiplier with single-ended voltage output and improved temperature performance,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 26, no. 9, pp. 1293–1301, Sep. 1991.
    [19] S. C. Liu, J. Kramer, G. Indiveri, T. Delbruck, and R. Douglas, Analog VLSI: Circuits and Principles., 2002.
    [20] C. F. Lee and P. K. T. Mok, “A monolithic current-mode cmos dc-dc converter with on-chip current-sensing technique,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 39, no. 1, pp. 3–14, Jan. 2004.
    [21] M. Banu and Y. Tsividis, “Floating voltage-controlled resistors in cmos technology,” Electronics Letters, vol. 18, no. 15, pp. 678–679, Jul. 1982.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE