簡易檢索 / 詳目顯示

研究生: 張志豪
Chih-Hao Chang
論文名稱: 一種使用分段電阻電容模型的方法來分析最大串音雜訊
Modeling for Worst-case Crosstalk Noise Using Segmental RC Method
指導教授: 張慶元
Tsin-Yuan Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 61
中文關鍵詞: 網路串音雜訊邏輯閘模型極點/零點最大串音雜訊
外文關鍵詞: Interconnect, Crosstalk Noise, Gate Model, Pole / Zero, WCN
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於製程快速演進,元件的大小隨之快速縮小,而電路的性能也跟著加速。在現今的高速晶片中,網路(interconnect)上的延遲主宰了整個晶片性能。造成網路運作延遲或工作錯誤的因素中,串音雜訊(crosstalk noise)扮演了一個很重要的角色。在論文中將會對此現象做深入的探討,而且會對現今方法的優缺點做詳細的剖析。本論文目的即提供一個有效縮短分析時間及增加準確度的分析串音雜訊之方法。
    由於之前所提出的方法皆用最簡單的模型去模擬邏輯閘部分,本篇論文提出了有效率的模型去模擬此部分,且透過本身發展的極點/零點分析程式可以大大的加速執行時間。在分析串音雜訊部份使用了分段電阻/電容方法,對於精確度而言增加非常多,在不失執行速度下能得到更精確的結果。
    所有的例子分別使用提出的方法和其他方法做模擬並且加以比較,在比較之後發現提出的方法比用HSPICE軟體模擬方法較快,而其準確度(誤差<5%)也比以往方法的準確度高出許多,但在執行速度上面卻快上了幾十倍。如果能再針對演算法部份加以改進,相信執行速度一定會增加許多 (上百倍以上)。
    我們所提出的方法可分析最大串音雜訊(Worst-case Crosstalk Noise WCN),進而求出所相對應的輸入時間關係,這樣就可以知道何時才會發生最大串音雜訊。此外,未來我們將考慮電感元件和電感耦合的效應,以及找出更快速的演算法計算極點/零點分析以加快執行速度。之後更能對現有的積體電路做測試。


    An analytical method for estimating crosstalk noise peak time, peak value and its corresponding input patterns is proposed in this thesis. Through self-written pole/zero analysis program, the transient analysis of interconnect structure is easily realized. Different from past modeling method, the single RC model for driver/receiver is replaced by segmental RC model for more accuracy. The method proposed here offers simulation results close to HSPICE simulations but execution time is much smaller. And the feature has the ability to deal with multi-line interconnect structures. Therefore, through proper alignment for aggressors produces input patterns that cause maximum crosstalk noise.

    Abstract 1 Contents 2 List of Figures 4 List of Tables 6 Chapter 1 Introduction 7 1.1 Crosstalk Phenomena 9 1.2 Motivation 10 1.3 Organization 11 Chapter 2 Preliminaries 12 2.1 Worst-Case Crosstalk Noise (WCN) 12 2.1.1 The WCN Condition 12 2.1.2 Aggressor Alignment 13 2.2 Asymptotic Waveform Evaluation (AWE ) 14 2.2.1 Moment Generation 14 2.2.2 Moment Matching 15 2.3 Numerical Methods 17 2.3.1 Newton Method and Modified False Position Method 17 2.3.2 Companion Matrix and QR Iteration 18 2.4 Gate Modeling 21 2.4.1 Inverter Gate Model 21 2.4.2 Analysis of Parameters 22 2.4.3 Input and Output Relationship 23 Chapter 3 The Proposed Analysis Flow 25 3.1 Construction of Interconnect Structure 25 3.1.1 Input Signal Information 27 3.1.2 Combine With Inverter Model 28 3.2 Generate Transfer Functions 30 3.2.1 Polynomial Generation 30 3.2.2 Model Reduction 31 3.2.3 Pole / Zero Generation 33 3.3 Estimate Peak Time 35 3.3.1 Pole Approximation Method 36 3.3.2 AWE Technique for Initial Value 37 3.3.3 Segmental RC Model 37 3.3.4 Estimate Peak Time Flow 41 3.3.5 Aggressor Alignment 44 Chapter 4 Simulation Results and Comparisons 47 4.1 Simulation Conditions 47 4.1.1 Pole / Zero Constraints 47 4.2 Simulation Results 49 4.2.1 Pre-work Preparations 50 4.2.2 Real Case Simulations 54 Chapter 5 Conclusions 58 Bibliography 59

    [1] W. Y. Chen, S. K. Gupta, and M. A. Breuer, “Analytical Models for Crosstalk Excitation and Propagation in VLSI Circuits”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 21, no. 10, Oct. 2002, pp. 1117-1131.
    [2] L. Ding, D. Blaauw, and P. Mazumder, “Accurate Crosstalk Noise Modeling for Early Signal Integrity Analysis”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 22, no. 5, May. 2003, pp.627-634.
    [3] L. T. Pillage and R. A. Rohrer, “Asymptotic Waveform Evaluation for Timing Analysis”, IEEE Transactions on Computer-Aided Design, vol. 9, no. 4, April 1994, pp. 352-366.
    [4] L. H. Chen and M. Marek-Sadowska, “Aggressor alignment for worst-case crosstalk noise,” IEEE Transactions on Computer-Aided Design, vol. 20, no. 5, pp. 612-621, May 2001.
    [5] M. Ceilk, L. Pileggi and A. Odabasioglu, IC Interconnect Analysis, Kluwer Academic Publishers, Boston, 2002.
    [6] M. Kuhlmann and S. S. Sapatnekar, “Exact and Efficient Crosstalk Estimation,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 20, No. 7, pp. 858-866, 2001.
    [7] A. Nabavi-Lishi and N. C. Rumin, “Inverter Models of CMOS Gates for Supply Current and Delay Evaluation”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 13, no. 10, Oct. 1994, pp. 1271-1279.
    [8] A. B. Kahng and S. Muddu, “Gate Load Delay Computation Using Analytical Models”, Proceedings of IEEE Asia Pacific Conference on Circuits and Systems, Nov. 1996, pp. 433-436.
    [9] F. Dartu, N. Menezes, and L. T. Pileggi, “Performance Computation of Precharacterized CMOS Gate with RC Loads”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 15, no.5, May, 1996, pp. 544-553.
    [10] J. Chen and L. He, “Determination of Worst-Case Crosstalk Noise for Non-Switching Victims in GHz+ Interconnects”, IEEE Design Automation Conference, Proceedings of the ASP-DAC, Asia and South Pacific, Jan. 2003, pp. 162-167.
    [11] F. Caignet, S. Delmas-Ben Diaz, and E. Sicard, “On the Measurement of Crosstalk in Integrated Circuits”, IEEE Transactions on Very Large Scale Integration Systems, vol. 8, no. 5, Oct. 2000, pp. 606-609.
    [12] A. Chatzigeorgiou, S. Nikolaidis, and I. Tsoukals, “Modeling CMOS Gates Driving RC Interconnect Loads”, IEEE Transactions on Circuit and Systems II – Analog and Digital Signal Processing, vol. 48, no. 4, Apr. 2001, pp. 413-418.
    [13] P. Renault, P. Bazargan-Sabet, and D. L. Du, “A MOS Transistor Model for Peak Voltage Calculation of Crosstalk Noise”, Proceeding of IEEE on Electronics, Circuits and Systems, 9th International Conference, vol. 2 , Sept. 2002, pp. 773 – 776.
    [14] A. Sinha, S. K. Gupta, and M. A. Breuer, “Validation and Test Issues Related to Noise Induced by Parasitic Inductances of VLSI Interconnects”, IEEE Transactions on Advanced Packaging, vol. 25, no. 3, Aug. 2002, pp. 329-339.
    [15] A. Vittal and M. Marek-Sadowska, “Crosstalk Reduction for VLSI”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems”, vol. 16, no. 3, Mar. 1997, pp. 290-298.
    [16] Plybon and Benjamin F., An introduction to applied numerical analysis, PWS-Kent Pub. Co., Boston, 1992.
    [17] Avant Corporation, “Star-Hspice Manual”, Dec. 2000.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE