簡易檢索 / 詳目顯示

研究生: 潘贈傑
Pan, Tseng-Chieh
論文名稱: 奈米鈀觸媒於矽烷改質之矽晶片上無電鍍鎳沉積之研究
Application of Nano Palladium Catalyst for Electroless Nickel Deposition on Silane-compound Modified Silicon Wafer
指導教授: 衛子健
Wei, Tzu-Chien
口試委員: 陳志銘
馮憲平
吳中瀚
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 115
中文關鍵詞: 奈米鈀觸媒矽烷表面改質無電鍍鎳附著力
外文關鍵詞: PVP-Pd, silane, surface modification, electroless Ni plating, adhesion
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   矽太陽能電池已問世五十餘年,對效率的追求、製程的改善仍是不斷的改進。其中在正面金屬化製程中,發展無電鍍鎳/電鍍銅之正面導線結構取代傳統網印銀線為其中一重要目標。前人的研究顯示,無電鍍鎳與矽晶表面間附著力不佳是個關鍵。因此本論文致力於無電鍍鎳沉積層與矽晶表面間之附著力的改善,方法為在矽晶表面以矽烷表面改質作,並搭配上自行開發的奈米鈀觸媒(Polyvinylpyrrilidone Capped Palladium, PVP-Pd),並藉由矽烷分子與矽晶表面以及奈米鈀觸媒間的交互作用,增加後續鍍層之附著力。
    實驗的首部分是在矽烷表面改質之結果分析,先利用接觸角量測來判定表面改質的效果,再以螢光染色來觀察表面塗佈情形並以原子力顯微鏡觀察表面型態在表面改質前後的變化。最後以傅立葉紅外光譜儀觀察超音波震盪前後矽烷表面改質層官能基的吸收波值變化,並再以原子力顯微鏡觀察超音破震盪步驟前後表面粗糙度之變化。
    實驗的第二部分為無電鍍鎳沉積層與矽晶表面之附著力以及接觸電阻之討論。進行其測試之試片皆為無電鍍鎳沉積1分鐘(厚度約0.2 μm),在所有實驗條件中附著力表現最佳的條件為未經熱退火之矽烷表面改質搭配濃度100ppm之PVP-Pd觸媒之試片,其附著力平均值為11 MPa,且與使用商用觸媒之試片(2.57 MPa)相比有明顯提升。在進一步的探討中,針對矽烷分子與PVP-Pd觸媒之間的交互作用機制作探討,藉由X射線光電子能譜儀證明兩者間經由電子交換產生交互作用情形。另一方面,以傳輸線模型量測得無電鍍鎳層與矽晶表面之特徵電阻後,可計算出特徵接觸電阻值,在所有量測試片中以未經熱退火之矽烷表面改質搭配濃度50ppm之PVP-Pd觸媒之試片,特徵接觸電阻值最低,其值為0.0532 ohm.cm2,是僅使用商用錫鈀膠體之試片的1/3倍。


    Although silicon solar cell is discovered more than 50 years, the chase on raising high efficiency as well as improving fabrication technology continuous. During the process of front metallization, electroless plating of nickel/copper bi-layer an alternative for conventional srcreen-printing silver past is one of important technical goal. However, it is revealed that the physical adhesion between electroless plating nickel layer (ELS/Ni) and silicon (Si) wafer is too weak to provide adequate contact. Therefore in this study, we aim to improve the physical adhesion as well as electrical contact of ELS/Ni on Si wafer. In particular, we attempt to modify Si wafer surface with silane compound and then utilize a novel, self-developed nano-palladium particle catalyst (Polyvinylpyrrilidone Capped Palladium, PVP-Pd); the PVP-Pd is found to have molecular-level interaction with the functional groups on the silane compound and consequently provide better macroscopic adhesion.
    In the first part, we focus on the effect of silane compound modification which is examined by contact angle measurements, fluorescent labelling, as well as atomic force microscope (AFM). In addition, the fourier-transform infrared spectrometer (FTIR) is applied to explain the effect of post-sonication on silane-modified Si surface.
    The second part of this study is to examine the adhesion and contact resistance between ELS/Ni layer and Si wafer. All of the sample prepared by ELS/Ni (shows comparable film thickenss of ~ 0.2μm for a depositon time of 1 minute). As to the adhesion test, the result shows that the best adhesion value of 11 MPa is found in the sample using 100ppm PVP-Pd on silane-modified silicon surface without the need of post rapid thermal annealing (RTA), which is much higher than the sample made of commercial Sn/Pd catalyst (2.57 MPa). To explain this improvement, X-ray photoelectron spectroscopy (XPS) is applied results to understand the interaction between sialne compound and PVP-Pd particle. Meanwhile, we also try to measure the specific contact resistance between the ELS/Ni and Si wafer. According to the transmission line model (TLM) method and proper pattern on the sample, an acceptable value of 0.0532 ohm.cm2 is measured in the sample using 50ppm PVP-Pd on silane-modified Si surface without RTA, which is one third of the sample using commercial catalyst.

    摘要 I Abstract II 總目錄 IV 圖目錄 VII 表目錄 XIII 第一章 緒論 1 1.1前言 1 1.2矽晶太陽電池基本介紹 5 1.3矽晶太陽電池的效率 7 1.4 矽晶太陽電池正面金屬化 8 1.4.1網印銀漿的開發 10 1.4.2混成銀導線製程(Hybrid Silver Contact) 11 1.4.3噴墨法 (Inkjet Printing) 12 1.4.4微影蝕刻/蒸鍍金屬 12 1.4.5無電鍍鎳/電鍍銅金屬化法 13 第二章 文獻回顧 22 2.1無電鍍鎳技術的開發 22 2.2無電鍍鎳觸媒 26 2.2.1錫鈀膠體觸媒 (Pd/Sn Colloid) 26 2.3奈米鈀觸媒(Polyvinylpyrrolidone Capped Palladium, PVP-Pd) 27 2.3.1 PVP-Pd應用於無電鍍金屬沉積 32 2.4矽烷化合物表面改質 33 2.4.1矽烷化合物表面改質原理 33 2.4.2胺基矽烷 34 2.4.3胺基矽烷表面改質應用於無電鍍金屬沉積附著力改善 37 2.4.4無電鍍鎳於矽烷改質之矽晶圓上之鎳矽界面探討 44 2.5 研究動機 47 第三章 實驗 49 3.1藥品 49 3.2實驗架構 49 3.3分析方法及儀器原理 51 3.3.1接觸角量測 51 3.3.2原子力顯微鏡(Atomic Force Microscope, AFM ) 52 3.3.3掃描式電子顯微鏡/能量散射光譜儀(Scanning Electron Microscopy / Energy Dispersive Spectromter , SEM/EDS) 54 3.3.4 X射線光電子能譜儀 (X-ray photoelectron spectroscopy, XPS ) 55 3.3.5傅立葉轉換紅外光譜儀 (Fourier-Transform Infrared Spectrometer, FTIR) 57 3.3.6傳輸線模型 (Transmission line model ,TLM)原理介紹 58 3.3.7螢光染色法應用於矽烷表面改質之定性分析 60 3.4接面物理機械性測試 61 第四章 結果與討論 63 4.1實驗步驟之建立 63 4.1.1矽烷表面改質製程開發 63 4.1.2 PVP-Pd奈米粒子合成 66 4.1.3無電鍍沉積 68 4.1.4 TLM樣品製作流程 70 4.2矽烷表面改質結果與討論 71 4.3 PVP-Pd觸媒吸附於矽晶表面分析 77 4.4無電鍍鎳鍍率 80 4.5無電鍍鎳層與矽晶圓表面間介面之物理性質探討 85 4.5.1無電鍍鎳層之附著力探討 85 4.5.2 XPS分析胺基矽烷層與奈米鈀觸媒吸附機制 89 4.5.3進行熱退火製程後附著力探討 95 4.5.4無電鍍鎳層之接觸電阻探討 98 第五章 結論與未來展望 102 5.1結論 102 5.2未來展望 104 參考資料 105

    [1]. 鄔宏潘,牛頓量子科學雜誌,26期,18 (2009)。
    [2]. 經濟部能源局, http://web3.moeaboe.gov.tw/ECW/populace/home/Home.aspx.
    [3]. 林明獻,”太陽能電池技術入門(修訂版)”,全華圖書股份有限公司 (2009)。
    [4]. R. William, ” Becquerel Photovoltaic Effect in Binary Compounds”, J. Chem. Phys., 32, 1505 (1960).
    [5]. D. Chapin, C. Fuller, G. Pearson, “A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power”, J. App. Phys., 25,676 (1954).
    [6]. G. Pearson,” Conversion of Solar to Electrical Energy”, J. App.Phys., 25, 591 (1957).
    [7]. J. Hoornsta, G. Schubert, G. Beaucarne, ” Proceedings of the 2nd Workshop on Metallization for Crystalline Silicon Solar Cells : Status, trends and new directions”, Germany, 2010.
    [8]. G. Beaucarne, G. Schubert, J. Hoornstra, J. Horzel, S. W. Glunz, ” Summary of the Third Workshop on Metallization for Crystalline Silicon Solar Cells”, Energy Procedia, 21, 2-13 (2012).
    [9]. 張正華,李陵嵐,業楚平,楊平華,”有機與塑膠太陽能電池”,五南圖書出版股份有限公司(2007)。
    [10]. National Renewable Energy Laboratory, http://www.nrel.gov/.
    [11]. A. Mette, ” New Concepts for Front Side Metallization of Industrial Silicon Solar Cells”, Fraunhofer-Institut für Solare Energuesysteme Freburg im Breisgau (2007).
    [12]. 陳威霖,”Fine-line Metallization of Silicon-based Solar Cell by Electrochemical Deposition and Microcontact Printing”,碩士論文,國立清華大學 (2011) 。
    [13]. J. Bartsch, A. Mondon, M. Glatthaar, S. W. Glunz, ” 21.4 % Silicon Solar Cells with Fully Plated Nickel – Copper Metallization” ,Presentation at the 3rd Metallization Workshop, Charleroi, Belgium, (2011).
    [14]. S. Gall, J-F. Lerat, J. Vibert, S. Manuel, M. Pirot, T. Emeraud, ” Correlation between SiNx laser ablation and nickel silicide formation by Excimer Laser Annealing for two steps Ni-Cu metallization”, Presentation at the 4th Metallization Workshop, Constance, Germany, (2013).
    [15]. L. Hamann, R. Z. Gottwick, M. Haas, W. Wille, J. Mattheis, ” 30% Silver Reduction in Rear Side Busbar Pastes”, Presentation at the 4th Metallization Workshop, Constance, Germany, (2013).
    [16]. Metallization Workshop, http://www.metallizationworkshop.eu/home/.
    [17]. Netherlands Energy Research Centre, https://www.ecn.nl/about-ecn/.
    [18]. G. Laudisio, K. R. Mikeska, Z. Li , P. D. VerNooy, L. Liang, A. F. Carroll, “ Reduced contact resistance of new FS silverpastes towards fine line printing and cost reduction” ,Presentation at the 3rd Metallization workshop, Charleroi, Belgium, 2011.
    [19]. A. Ebong, I. B. Cooper, B. Rounsaville, A.Rohatgi, W. Borland, A. Carroll, K. Mikeska, ”Overcoming The Technological Challenges of Contacting Homogeneous High Sheet Resistance Emitters” , EU PVSEC, 26, 1747 (2011).
    [20]. S. Binder, “Printed Contact on Emitter With Low Dopant Surface Concentration”, Presentation at the 3rd Metallization Workshop, Charleroi, Belgium, 2011.
    [21]. C. Curtis, T. Rivkin, A. Miedaner, J. Alleman, J. Perkins, L. Smith, and D. Ginley, "Metallizations by direct-write inkjet printing", in NCPV Program Review Meeting, Lakewood, Colorado, USA (2001).
    [22]. T. Rivkin, C. Curtis, A. Miedaner, J. Perkins, J. Alleman, D. Ginley, "Direct write processing for photovoltaic cells", in Proceedings of the 29th IEEE Photovoltaics Specialists Conference, New Orleans, Louisiana, USA, 1326 (2002).
    [23]. T. Kaydanova, M. F. A. M. van Hest, A. Miedaner, C. J. Curtis, J. L. Alleman, M. S. Dabney, E. Garnett, S. Shaheen, L. Smith, R. Collins, J. I. Hanoka, A. M. Gabor, and D. S. Ginley, " Direct write contacts for solar cells", in Proceedings of the 31st IEEE Photovoltaic Specialists Conference, Orlando, USA, 1305 (2005).
    [24]. E. R. Weber, “ Transition Metals in Silicon”, Appl. Phys. A, 30, 1 (1983).
    [25]. J. Bartsch, A. Mondon, K. Bayer, C.Schetter, M. Hörteis, S. W. Glunz, “ Quick Determination of Copper-Metallization Long-Term Impact on Silicon Solar Cells”, J. Electrochem, Soc., 157, H942 (2010).
    [26]. M. V. Sullivan, J. H. Eigler, " Electroless nickel plating for making ohmic contacts", J. Electrochem. Soc., 104, 226 (1957).
    [27]. M. A. Green and S. R. Wenham, in Australian Patent No 5703309 Australia, (1984).
    [28]. J. D. Jensen, P. Moller, T. Bruton, N. Mason, R. Russell, J. Hadley, P. Verhoeven, A. Matthewson, " Electrochemical deposition of buried contacts in high-efficiency crystalline silicon photovoltaic cells", J. Electrochem. Soc., 150, 49 (2003).
    [29]. M. Alemán, A. Streek, P. Regenfuß, A. Mette, R. Ebert, H. Exner, S. W. Glunz, , G. Willeke, " Laser micro-sintering as a new metallization technique for silicon solar cells", in Proceedings of the 21st European Photovoltaic Solar Energy Conference, Dresden, Germany, 705 (2006).
    [30]. D. S. Kim, E. J. Lee, J. Kim, and S. H. Lee, " Low-cost contact formation of high-efficiency crystalline silicon solar cells by plating", Jorunal of the Korean Physical Society, 46, 1208 (2005).
    [31]. A. Mondon, M.N. Jawaid, J. Bartsch, M. Glatthaar, S.W. Glunz, ” Microstructure analysis of the interface situation and adhesion of thermally formed nickel silicide for plated nickel–copper contacts on silicon solar cells”, Solar Energy Materials & Solar Cells, 117, 209 (2013)
    [32]. C. Boulord, A. Kaminski, B. Canut, S. Cardinal, M. Lemiti, ” Electrical and Structural Characterization of Electroless Nickel-Phosphorus Contacts for Silicon Solar Cell Metallization”, J. Electrochem. Soc., 157, H742 (2010).
    [33]. A. Duhin, Y. Sverdlov, I. Torchinsky, Y. Feldman, Y. S. Diamand, ” NiSi Contact Metallization Using Electroless Ni Deposition on Pd-Activated Self-Assembled Monolayer (SAM) on P-Type Si(100)”, Microelectron. Eng. , 84, 2506 (2007).
    [34]. S. Karmalkar, V. P. Kumar, “ Effects of Nickel and Palladium Activations on the Adhesion and I-V Characteristics of As-Plated Electroless Nickel Deposits on Polished Crystalline Silicon”, J. Electrochem, Soc., 151, C554 (2004).
    [35]. Frolyt, http://www-frolyt-de/en/html/pull_off_force_measurement-html.
    [36]. J. Foggiato, W. Sik Yoo, M. Ouaknine, T. Murakami, T. Fukada, “Optimizing the formation of nickel silicide”, Mater. Sci. Eng., B , 114, 56 (2004).
    [37]. V. Carron, P. Besson, F. Pierre, ” Wet Etching Step Evolution for Selective Removal on Silicide or Germanide Applications”, J. Electrochem. Soc., 11, 309 (2007).
    [38]. A. Brenner, G. E. Riddell, “ Nickel Plating on Steel by Chemical Reduction”, J. Res. Nat’l Bur. Std., 37, 31 (1946).
    [39]. A. Brenner, G. E. Riddell, U.S. Pat. 2,582,283 (1950.)
    [40]. Y. Okinaka, T. Osaka, “ Electroless Deposition Processes: Fundamentals and Applications”, Advances in Electrochemical Science and Engineering, 3, 55 (1994).
    [41]. 楊聰仁,”無電鍍鎳及其應用”,國璋出版社,(1987)。
    [42]. 陳振瑞,”矽晶片上之選擇性無電鍍鎳”,碩士論文,國立清華大學 (1995)。
    [43]. I. Ohno, 0. Wakabayashi, S. Haruyama, “ Anodic Oxidation of Reductants in Electroless Plating”, J. Electrochem. Soc. , 132, 2323 (1985).
    [44]. H. F. Hsu, C. L. Tsai, C. W. Lee, H.Y. Wu ,” Mechanism of immersion deposition of Ni–P films on Si(100) in an aqueous alkaline solution containing sodium hypophosphite”, Thin Solid Films, 517, 4786 (2009).
    [45]. C. R. Shipley Jr., U.S. Pat. 3,011,920 (1961).
    [46]. C. H. de Minjer, P. F. v.d. Boom, ” The Nucleation with SnCl2-PdCl2 Solutions of Glass Before Eletroless Plating”, J. Electrochem. Soc., 120, 1644(1973).
    [47]. D. McBride, G. P. Vlasak, ”Sodium Borohydride Initiation of Electroless Plating”, J. Electrochem. Soc., 118, 2055 (1971)
    [48]. M. A. Khattak, R. J. Magee, “ Tin(II) chloride complexes of platinum metals: the palladium(II)–tin(II) system”, Chem. Commun., 17,400a (1965).
    [49]. M. Tsukahara, “ Reduction of Pd(II) with Sn(II) in Hydrochloric Acid”,J. Metal Finishing Soc. Japan, 23, 83 (1972)
    [50]. T. Osaka, H. Takematsu, ” A Study on Activation and Acceleration by Mix PdCl2/SnCl2 Catalysts for Electroless Metal Deposition”, J. Electrochem. Soc., 127, 1021(1980).
    [51]. 彭超, “ 奈米鈀金屬活化液之製備及其在化學鍍銅製程之應用”, 碩士論文,國立清華大學 (2006)。
    [52]. G. Schmid, L. F. Chi, ”Metal Clusters and Colloids”, Adv. Mater., 10, 515(1998).
    [53]. T. Yonezawa, K. Imamura, N. Kimizuka,” Direct Preparation and Size Control of Palladium Nanoparticle Hydrosols by Water-Soluble Isocyanide Ligands”, Langmuir, 17, 4701 (2001).
    [54]. D. E. Cliffel, F. P. Zamborini, S. M. Gross, R. W. Murray,” Mercaptoammonium-Monolayer-Protected, Water-Soluble Gold, Silver, and Palladium Clusters”, Langmuir, 16, 9699 (2000).
    [55]. I. Quiros, M. Yamada, K. Kubo, J. Mizutani, M. Kurihara, H. Nishihara, “ Preparation of Alkanethiolate-Protected Palladium Nanoparticles and Their Size Dependence on Synthetic Conditions”, Langmuir, 18, 1413 (2002).
    [56]. L. Lu, H. Wang, S. Xi, H. Zhang, ” Improved size control of large palladium nanoparticles by a seeding growth method”, J. Mater. Chem., 12, 156 (2002).
    [57]. H. Hirai, N. Yakura, Y. Seta, S. Hodoshima, ” Characterization of palladium nanoparticles protected with polymer as hydrogenation catalyst”, React. Funct. Polym., 37, 121 (1998).
    [58]. H. P. Choo, K. Y. Liew, H. Liub, ” Factors affecting the size of polymer stabilized Pd nanoparticles”, J. Mater. Chem., 12, 934 (2002).
    [59]. C.Peng, S. H. Y. Lo, C. C. Wan, Y. Y. Wang, “Study of the adsorptive behavior of Pd-PVP nanoparticles and its interaction with conditioner in electroless copper deposition”, Colloids Surf., A, 308, 93 (2007).
    [60]. Z. Zhang, B. Zhao, L. Hu, “ PVP Protective Mechanism of Ultrafine Silver Powder Synthesized by Chemical Reduction Processes”, J. Solid State Chem., 121, 105 (1996).
    [61]. J. Xian, Q. Hua, Z. Jiang, Y. Ma, W. Huang, “ Size-Dependent Interaction of the Poly(N-vinyl-2-pyrrolidone) Capping Ligand with Pd Nanocrystals”, Langmuir, 28, 6736 (2012).
    [62]. B. Arkles, “ Hydrophobicity and Hydrophilicity & Silanes”, Paint & Coatings Industry , 2006
    [63]. Z. H. Wang, G. Jin, “Silicon surface modification with a mixed silanes layer to immobilize proteins for biosensor with imaging ellipsometry”, Colloids Surf., B : Biointerfaces , 34, 173 (2004).
    [64]. P. Niehoff , P. Ebbinghaus, P. Keil, A. Erbe, “ Monolayer formation of octyltrimethoxysilane and 7-octenyltrimethoxysilane on silicon (1 0 0) covered with native oxide”, App. Sur. Sci., 258, 3191 (2012).
    [65]. J. Kim, P. Seidler, L. S. Wan, C. Fill, ” Formation, structure, and reactivity of amino-terminated organic films on siliconsubstrates”, J. Colloid Interface Sci. 329 ,114(2009) .
    [66]. E. Metwalli, D. Haines, O. Becker, S. Conzone, C.G. Pantano,” Surface characterizations of mono-, di-, and tri-aminosilane treated glass substrates”, J. Colloid Interface Sci., 298, 825 (2006).
    [67]. L. A. Chrisey, G. U. Lee, C. E. O'Ferrall1,” Covalent attachment of synthetic DNA to self-assembled monolayer films”, Nucleic Acids Res., 24, 3031 (1996).
    [68]. C. S. Dulcey, J. H. Georger, Jr., V. Krauthamer, D. A. Stenger, T. L. Fare, J. M. Calvert, “Deep UV Photochemistry of Chemisorbed Monolayers: Patterned Coplanar Molecular Assemblies”, J. SCIE., 26, 551 (1991).
    [69]. W. J. Dressick, C. S. Dulcey, J. H. Georger, Jr., G. S. Calabrese, J. M. Calvert , “ Covalent Binding of Pd Catalysts to Ligating Self-Assembled Monolayer Films for Selective Electroless Metal Deposition”, J. Electrochem. Soc., 141, 210 (1994).
    [70]. W. J. Dressick, L. M. Kondracki, M. S. Chen, S. L. Brandow, E. Matijevic, J. M. Calvert, “ Characterization of a colloidal Pd(II)-based catalyst dispersion for electroless metal deposition”, Colloids Surf., A, 108, 101 (1996).
    [71]. S. L. Walker, S. Bhattacharjee, E. M. V. Hoek, M Elimelech, “ A Novel Asymmetric Clamping Cell for Measuring Streaming Potential of Flat Surfaces”, Langmuir, 18, 2193 (2002).
    [72]. R. L. Jackson, “ Initiation of Electroless Copper Plating Using Pd+2/Poly(acrylic acid) Films”, J. Electrochem. Soc., 135, 3172 (1988).
    [73]. R. L. Jackson, “ Pd+2/Poly(acrylic acid) Thin Films as Catalysts for Electroless Copper Deposition: Mechanism of Catalyst Formation”, J. Electrochem. Soc 137, 95 (1990).
    [74]. J. E. Lynch, P. E. Pehrsson, D. N. Leonard, J. M. Calvert, ” Interfacial Electrical Properties of Electroless Ni Contacts”, J. Electrochem. Soc., 144, 1698 (1997).
    [75]. S. L. Brandow, W. J. Dressick, C. R. K. Marrian, G.M. Chow, J. M. Calvert,” The Morphology of Electroless Ni Deposition on a Colloidal Pd(II) Catalyst”, J. Electrochem. Soc., 142, 2233 (1995).
    [76]. D. Zabatakis, W. J. Dressick, ” Selective Electroless Metallization of Patterned Polymeric Films for Lithography Application”, Appl. Mater. Interfaces, 1, 4 (2009).
    [77]. T. Osaka, N. Takano, T. Kurokawa, T. Kaneko, K. Ueno, “ Electroless Nickel Ternary Alloy Deposition on SiO2 for Application to Diffusion Barrier Layer in Copper Interconnect Technology”, J. Electrochem. Soc., 147, C573 (2002).
    [78]. T. Osaka, M. Yoshino, “ New Formation Process of Plating Thin Films on Several Substrates by Means of Self-Assembled Monolayer (SAM) Process”, Electrochim. Acta, 53, 271 (2007).
    [79]. C. P. Lin, M. Saito, T. Homma, “ Initial catalyzation analysis of electroless NiP nanoimprinting mold replicated from self-assembled monolayer modified nanopattern”, Electrochim. Acta , 82, 75 (2012).
    [80]. M. Balucani, K. Kholostov, P. Nenzi, R. Crescenzi, L. Serenelli , M. Izzi , M. Tucci, D. Bernardi, D. Ciarniello, ” New selective processing technique for solar cell”, Presentation at the 4th Metallization Workshop, Constance, Germany (2013).
    [81]. L. Xu , J. Liao , L. Huang , D. Ou , Z. Guo , H. Zhang , C. Ge , N. Gu , J. Liu,” Surface-Bound Nanoparticles for Initiating Metal Deposition”, Thin Solid Films , 434,121 (2003).
    [82]. D. Janssen, “Self-Assembling Monolayer for Organic Thin Film Transistors”, Katholieke Universiteit Leuven Faculteit Wetenschappen Departement Chemie, (2006)
    [83]. 原子力顯微鏡原理, http://www.knvs.tp.edu.tw/AFM/ch4.htm
    [84]. 施正雄,” 儀器分析原理與應用”,五南圖書出版股份有限公司 (2012)。
    [85]. 張銀祐,” 掃瞄式電子顯微鏡及能量散佈光譜儀原理與奈米科技應用”,演講簡報,明道大學 (2007)。
    [86]. G.K. Reeves, H. B. Harrison, "Obtaining the specific contact resistance from transmission line model measurements.", IEEE Electron Device Letters, 3, 111 (1982).
    [87]. H. Maeda, N. Ishida, H. Kawauchi, K. Tuzimura, “Reaction of Fluorescein-Isothiocyanate with Proteins and Amino Acid”,J. Biochem. 65, 777 (1969) .
    [88]. Y. Kado, A. Aoki, T. Miyashita, “Surface modification using polymer Langmuir-Blodgett films”, J.Mater. Sci., 37, 4839(2002).
    [89]. 林哲宇," 以電化學技術與自組裝單分子膜表面改質技術於透明導電玻璃上製備鉑電極之研究",博士論文,國立清華大學 (2012)。
    [90]. ASTM D4541 , http://www.dfdinstruments.co.uk/topics/Study5-ASTM-D4541.htm
    [91]. RCA製程, http://www.ndl.narl.org.tw/web/department/cfteam/docs/devices/C5_B.pdf
    [92]. 藍若琳,”銀鈀合金奈米粒子之製備及其在無電鍍沉積之應用”,碩士論文, 國立清華大學 (2007)。
    [93]. C. C. Yang, Y. Y. Wang , C. C. Wan, “ Synthesis and Characterization of PVP Stabilized Ag/Pd Nanoparticles and Its Potential as an Activator for Electroless Copper Deposition”, J. Electrichem. Soc.,152, C96(2005).
    [94]. L.D. White, C.P. Tripp, “ Reaction of (3-Aminopropyl)dimethyloxysilane with Amine Catalysts on Silica Surface.”, J. Colloid Interface Sci., 232, 400 (2000).
    [95]. C. H. Chiang, H. Ishida, J. L. Koenig, “ The Structure of γ-Aminopropyltriethoxysilane on Glass Surface”, J. Colloid Interface Sci., 74, 396 (1980).
    [96]. N. Abidi, E. Hequet, L. Cabrales,” Application of Fourier Transform Infrared Spectroscopy to Study Cotton Fibers, Fourier Transforms – New Analytical Approaches and FTIR Strategies”, ISBN: 978-953-307-232-6, In Tech, (2011).
    [97]. E. Ayres, W. L. Vasconcelos, R. L. Oréfice,” Attachment of inorganic moieties onto aliphatic polyurethanes”, Mat. Res. 10, 119 (2007).
    [98]. R. M. Silverstein, G. C. Bassler, T. C. Morrill, “ Spectrometric Identification of Organic Compounds”, 4th ed., New York: John Wiley and Sons, (1981).
    [99]. C. Boulord, “ Comparison of different electrochemical deposits for contact metallization of silicon solar cells”, Presentation at the 1st Metallization workshop, Utrecht, 2008.
    [100]. T. Asher, A. Inberg, E. Glickman, N. Fishelson, Y. Shacham-Diamand, ” Formation and Characterization of Low Resistivity Sub-100nm Copper Films Deposited by Electroless on SAM”, Electrochim. Acta, 54, 6053 (2009).
    [101]. L. Liu, S. Song, P. Zhang, ” Formation of Amino-terminated Self-assembled Monolayers from Long-chain Aminomethoxysilanes”, Surf. Interface Anal., 45 993 (2013).
    [102]. X. Song, J. Zhai, Y. Wang, L. Jiang, ” Self-assembly of Amino-functionalized Monolayer on Silicon Surfaces amd Preparation of Superhydrophobic Surface on Alkane Acid Dual Layers and Surface Roughening”, Adv. Colloid Interface Sci., 298, 267 (2006).
    [103]. F. Zhang, M.P. Srinivasan, “ Self-Assembled Molecular Films of Aminosilanes and Their Immobilization Capacities”, Langmuir, 20, 2309 (2004).
    [104]. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, “ Handbook of X-ray Photoelectron Spectroscopy”, Physical Electronics, America, 1995.
    [105]. H. Dai, H. Li, F. Wang, “ Electroless Ni-P Coating Preparation of Conductive Mica Powder by A Modified Activation Process”, Appl. Surf. Sci., 253, 2474 (2006).
    [106]. J. L. Lan, C. C. Wan, T. C. Wei, W. C. Hsu, C. Pang, Y. H. Chang, C. M. Chen, ” Improvement of Photovoltaic Performance of Dye-Sensitized Solar Cell by Post Heat Treatment of Polymer-Capped Nano-Platinum Counterelectrode”, Int. J. Electrochem. Sci., 6, 1230 (2011).
    [107]. Y. K. Du, P. Yang, Z. G. Mou, N. P. Hua, L. Jiang, “ Thermal Decomposition Behavior of PVP Coated on Platium Nanoparticles”, J. Appl. Polym. Sci., 99, 23 (2006).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE