簡易檢索 / 詳目顯示

研究生: 郭宗裕
Kuo, Zong-Yu
論文名稱: 透過宿主與病原體的互動網路來尋找白色念珠菌和斑馬魚之間與感染有關的蛋白質
Seeking for the potential infection-related proteins between C. albicans and zebrafish via dynamic host-pathogen interaction network
指導教授: 陳博現
Chen, Bor-Sen
口試委員: 曾慶平
藍忠昱
莊永仁
李曉青
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 61
中文關鍵詞: 白色念珠菌斑馬魚感染
外文關鍵詞: Candida albicans, zebrafish, infection
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 白色念珠菌的感染與念珠菌症是非常難治療並且在藥物治療上產生了一個很嚴峻的挑戰。這篇論文利用了白色念珠菌感染斑馬魚的過程中得到的不同時間點的microarray data,來建造出第一個白色念珠菌跟長菌絲有關的的動態蛋白質互動(PPI)網路和斑馬魚對抗感染的動態PPI網路和他們之間有可能的PPI連線網路,將這三種網路合在一起變成一個宿主和病原體互相攻防的整體網路。根據這個整體的網路,白色念珠菌調控型態轉變與菌絲生長的pathway可以被更進一步的研究。為了找出跟菌絲生長有關的重要蛋白質,我們根據不同感染的階段(附著和入侵)建立出兩個蛋白質網路接著比較這兩個網路找出哪些蛋白質的連線數變化最大。從這些重要蛋白質我們可以更清楚的瞭解菌絲的發展在感染的過程中扮演的角色。我們也可以利用同樣的方法建立出兩個不同感染的階段的斑馬魚動態蛋白質網路,來找出斑馬魚重要的防守蛋白質,還有透過我們建立出來的白色念珠菌與斑馬魚之間有可能的PPI連線網路,可以看出哪些蛋白質在感染的過程中影響力是最大的,進而找出哪些生物功能在他們的互動中扮演著重要的角色。這個整合性的感染蛋白質互動網路可以幫助我們瞭解白色念珠菌造成致病的分子機制和斑馬魚抵抗的分子機制,希望能夠對改進藥物治療方法與找出新的抗菌藥物有所幫助。


    Candida albicans infections and candidiasis are difficult to treat and create very serious challenge in therapeutics. In this study, based on interactive time profile microarray data of C. albicans and zebrafish in infectious process, the protein-protein interaction (PPI) networks of C. albicans and zebrafish and the intercellular protein interaction network between host and pathogen are simultaneously constructed for the first time by dynamic interaction model, as an integrated intercellular invading and defensive cellular network in infectious process. According to the intercellular interaction network, the signal transduction pathways in regulating morphogenesis and hyphal growth of C. albicans are further investigated. For further inspection of important proteins of virulent hyphal growth as the pathogenesis of C. albicans, two stage cellular networks are also developed according to the different infection stages (adhesion and invasion) and are then compared each other to find hyphal growth subnetwork with the most changes of protein interactions (i.e. hubs) in hyphal growth. From these important protein hubs in the hyphal growth subnetwork, we can gain more insight into the pathogenic role of the hyphal development in infectious process. The important defensive proteins of zebrafish can also be obtained by using the same approach. The hyphal growth PPI network, zebrafish PPI network and host-pathogen intercellular PPI network are included as an integrated infectious protein interaction network to help us understand the molecular mechanisms underlying the pathogenicity of C. albicans and the defense of host to improve medical therapy and facilitate the development of new anti-fungal drugs.

    Content Abstract i Content iii List of Figures iv List of tables v List of supplemental materials vi Introduction 1 Materials and Methods 5 2.1 Overview of the process 5 2.2 Data selection and preprocessing 5 2.3 Selection of protein pool for rough PPI networks 7 2.4 Dynamic model of infectious cellular protein interaction network 9 2.5 Network parameter identification via time series microarray data 10 2.6 Determination of significant interaction pairs 12 2.7 Construct intercellular protein interactions between pathogen and host 13 Results 16 3.1 Construction of the integrated infectious intercellular PPI network 16 3.2 Inspection of the dynamic hyphal growth PPI network of C. albicans 19 3.3 Utilizing dynamic intercellular PPI networks to discuss which protein will play an important role in hyphal growth development 22 3.4 The intercellular protein interactions between Candida albicans and zebrafish in infectious processing 28 Discussion 31 Conclusion 36 Bibliography 38

    1. Fidel PL, Jr.: Immunity to Candida. Oral Dis 2002, 8 Suppl 2:69-75.
    2. Leroy O, Gangneux JP, Montravers P, Mira JP, Gouin F, Sollet JP, Carlet J, Reynes J, Rosenheim M, Regnier B et al: Epidemiology, management, and risk factors for death of invasive Candida infections in critical care: a multicenter, prospective, observational study in France (2005-2006). Crit Care Med 2009, 37(5):1612-1618.
    3. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB: Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 2004, 39(3):309-317.
    4. Kojic EM, Darouiche RO: Candida infections of medical devices. Clin Microbiol Rev 2004, 17(2):255-267.
    5. Seneviratne CJ, Jin L, Samaranayake LP: Biofilm lifestyle of Candida: a mini review. Oral Dis 2008, 14(7):582-590.
    6. Warnock DW: Trends in the epidemiology of invasive fungal infections. Nippon Ishinkin Gakkai Zasshi 2007, 48(1):1-12.
    7. Barnes RA: Early diagnosis of fungal infection in immunocompromised patients. J Antimicrob Chemother 2008, 61 Suppl 1:i3-6.
    8. Pfaller MA, Diekema DJ: Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 2007, 20(1):133-163.
    9. Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR: Nonfilamentous C. albicans mutants are avirulent. Cell 1997, 90(5):939-949.
    10. Kobayashi SD, Cutler JE: Candida albicans hyphal formation and virulence: is there a clearly defined role? Trends Microbiol 1998, 6(3):92-94.
    11. Calderone RA, Fonzi WA: Virulence factors of Candida albicans. Trends Microbiol 2001, 9(7):327-335.
    12. Cutler JE: Putative virulence factors of Candida albicans. Annu Rev Microbiol 1991, 45:187-218.
    13. Navarro-Garcia F, Sanchez M, Nombela C, Pla J: Virulence genes in the pathogenic yeast Candida albicans. FEMS Microbiol Rev 2001, 25(2):245-268.
    14. Leberer E, Ziegelbauer K, Schmidt A, Harcus D, Dignard D, Ash J, Johnson L, Thomas DY: Virulence and hyphal formation of Candida albicans require the Ste20p-like protein kinase CaCla4p. Curr Biol 1997, 7(8):539-546.
    15. Braun BR, van Het Hoog M, d'Enfert C, Martchenko M, Dungan J, Kuo A, Inglis DO, Uhl MA, Hogues H, Berriman M et al: A human-curated annotation of the Candida albicans genome. PLoS Genet 2005, 1(1):36-57.
    16. Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, Newport G, Thorstenson YR, Agabian N, Magee PT et al: The diploid genome sequence of Candida albicans. Proc Natl Acad Sci U S A 2004, 101(19):7329-7334.
    17. Ihmels J, Bergmann S, Berman J, Barkai N: Comparative gene expression analysis by differential clustering approach: application to the Candida albicans transcription program. PLoS Genet 2005, 1(3):e39.
    18. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M et al: Life with 6000 genes. Science 1996, 274(5287):546, 563-547.
    19. Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB: Molecular evidence for the early colonization of land by fungi and plants. Science 2001, 293(5532):1129-1133.
    20. Meeker ND, Trede NS: Immunology and zebrafish: spawning new models of human disease. Dev Comp Immunol 2008, 32(7):745-757.
    21. Sullivan C, Kim CH: Zebrafish as a model for infectious disease and immune function. Fish Shellfish Immunol 2008, 25(4):341-350.
    22. Amsterdam A, Hopkins N: Mutagenesis strategies in zebrafish for identifying genes involved in development and disease. Trends Genet 2006, 22(9):473-478.
    23. Postlethwait J, Amores A, Force A, Yan YL: The zebrafish genome. Methods Cell Biol 1999, 60:149-163.
    24. Chao CC, Hsu PC, Jen CF, Chen IH, Wang CH, Chan HC, Tsai PW, Tung KC, Wang CH, Lan CY et al: Zebrafish as a Model Host for Candida albicans Infection. Infection and Immunity 2010, 78(6):2512-2521.
    25. Wang YC, Chen BS: Integrated cellular network of transcription regulations and protein-protein interactions. BMC Syst Biol 2010, 4:20.
    26. Yan Yu Chen1 C-CC, Fu-Chen Liu2, Po-Chen Hsu3, David Shan Hill Wong1§, Yung Jen Chuang2§, Chung-Yu Lan3§, Wen-Ping Hsieh4: Dynamic transcriptomic analysis of Candida albicans and zebrafish host interactions revealed iron competition is critical for fungal virulence. Submitted to Molecular Systems Biology 2011.
    27. Mullin JM, Agostino N, Rendon-Huerta E, Thornton JJ: Keynote review: epithelial and endothelial barriers in human disease. Drug Discov Today 2005, 10(6):395-408.
    28. Wachtler B, Wilson D, Haedicke K, Dalle F, Hube B: From attachment to damage: defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells. PLoS One 2011, 6(2):e17046.
    29. Alon U: An introduction to systems biology : design principles of biological circuits. Boca Raton, FL: Chapman & Hall/CRC; 2007.
    30. Coleman TF, Hulbert LA: A Direct Active Set Algorithm for Large Sparse Quadratic Programs with Simple Bounds. Math Program 1989, 45(3):373-406.
    31. Bar-Joseph Z, Gerber G, Gifford DK, Jaakkola TS, Simon I: A new approach to analyzing gene expression time series data. In: Proceedings of the sixth annual international conference on Computational biology. Washington, DC, USA: ACM; 2002: 39-48.
    32. De Boor C: A practical guide to splines : with 32 figures, Rev. edn. New York: Springer; 2001.
    33. Orntoft TF, Thykjaer T, Waldman FM, Wolf H, Celis JE: Genome-wide study of gene copy numbers, transcripts, and protein levels in pairs of non-invasive and invasive human transitional cell carcinomas. Mol Cell Proteomics 2002, 1(1):37-45.
    34. Newman JRS, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, DeRisi JL, Weissman JS: Single-cell proteomic analysis of S-cerevisiae reveals the architecture of biological noise. Nature 2006, 441(7095):840-846.
    35. Akaike H: New Look at Statistical-Model Identification. Ieee T Automat Contr 1974, Ac19(6):716-723.
    36. Johansson R: System modeling and identification. Englewood Cliffs, NJ: Prentice Hall; 1993.
    37. Wu WS, Li WH, Chen BS: Identifying regulatory targets of cell cycle transcription factors using gene expression and ChIP-chip data. BMC Bioinformatics 2007, 8:188.
    38. Edwards JE, Jr., Rotrosen D, Fontaine JW, Haudenschild CC, Diamond RD: Neutrophil-mediated protection of cultured human vascular endothelial cells from damage by growing Candida albicans hyphae. Blood 1987, 69(5):1450-1457.
    39. Hummert S, Hummert C, Schroter A, Hube B, Schuster S: Game theoretical modelling of survival strategies of Candida albicans inside macrophages. J Theor Biol 2010, 264(2):312-318.
    40. Efron B, Tibshirani R: An introduction to the bootstrap. New York: Chapman & Hall; 1993.
    41. Dyer SA, Dyer JS: Cubic-spline interpolation: Part 1. Ieee Instru Meas Mag 2001, 4(1):44-46.
    42. Esser K: The mycota : a comprehensive treatise on fungi as experimental systems for basic and applied research, 2nd edn. Berlin ; New York: Springer; 2008.
    43. Csank C, Schroppel K, Leberer E, Harcus D, Mohamed O, Meloche S, Thomas DY, Whiteway M: Roles of the Candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis. Infect Immun 1998, 66(6):2713-2721.
    44. Monge RA, Roman E, Nombela C, Pla J: The MAP kinase signal transduction network in Candida albicans. Microbiology 2006, 152(Pt 4):905-912.
    45. Dhillon NK, Sharma S, Khuller GK: Signaling through protein kinases and transcriptional regulators in Candida albicans. Crit Rev Microbiol 2003, 29(3):259-275.
    46. Lengeler KB, Davidson RC, D'Souza C, Harashima T, Shen WC, Wang P, Pan X, Waugh M, Heitman J: Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 2000, 64(4):746-785.
    47. Bockmuhl DP, Krishnamurthy S, Gerads M, Sonneborn A, Ernst JF: Distinct and redundant roles of the two protein kinase A isoforms Tpk1p and Tpk2p in morphogenesis and growth of Candida albicans. Mol Microbiol 2001, 42(5):1243-1257.
    48. Uhl MA, Biery M, Craig N, Johnson AD: Haploinsufficiency-based large-scale forward genetic analysis of filamentous growth in the diploid human fungal pathogen C.albicans. Embo J 2003, 22(11):2668-2678.
    49. Yaar L, Mevarech M, Koltin Y: A Candida albicans RAS-related gene (CaRSR1) is involved in budding, cell morphogenesis and hypha development. Microbiol-Uk 1997, 143:3033-3044.
    50. Woo M, Lee K, Song K: MYO2 is not essential for viability, but is required for polarized growth and dimorphic switches in Candida albicans. Fems Microbiol Lett 2003, 218(1):195-202.
    51. Dunkler A, Wendland J: Candida albicans RHO-type GTPase-encoding genes required for polarized cell growth and cell separation. Eukaryotic Cell 2007, 6(5):844-854.
    52. Li MC, Martin SJ, Bruno VM, Mitchell AP, Davis DA: Candida albicans Rim13p, a protease required for Rim101p processing at acidic and alkaline pHs. Eukaryotic Cell 2004, 3(3):741-751.
    53. Uhl MA, Biery M, Craig N, Johnson AD: Haploinsufficiency-based large-scale forward genetic analysis of filamentous growth in the diploid human fungal pathogen C.albicans. Embo J 2003, 22(11):2668-2678.
    54. Barabasi AL, Oltvai ZN: Network biology: understanding the cell's functional organization. Nat Rev Genet 2004, 5(2):101-113.
    55. Jeong H, Mason SP, Barabasi AL, Oltvai ZN: Lethality and centrality in protein networks. Nature 2001, 411(6833):41-42.
    56. Roig P, Gozalbo D: Depletion of polyubiquitin encoded by the UBI4 gene confers pleiotropic phenotype to Candida albicans cells. Fungal Genet Biol 2003, 39(1):70-81.
    57. Shapiro RS, Uppuluri P, Zaas AK, Collins C, Senn H, Perfect JR, Heitman J, Cowen LE: Hsp90 Orchestrates Temperature-Dependent Candida albicans Morphogenesis via Ras1-PKA Signaling. Curr Biol 2009, 19(8):621-629.
    58. Zheng X, Wang Y: Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. Embo J 2004, 23(8):1845-1856.
    59. Leberer E, Harcus D, Broadbent ID, Clark KL, Dignard D, Ziegelbauer K, Schmidt A, Gow NAR, Brown AJP, Thomas DY: Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. P Natl Acad Sci USA 1996, 93(23):13217-13222.
    60. Lu Y, Su C, Mao XM, PalaRaniga P, Liu HP, Chen JY: Efg1-mediated Recruitment of NuA4 to Promoters Is Required for Hypha-specific Swi/Snf Binding and Activation in Candida albicans. Mol Biol Cell 2008, 19(10):4260-4272.
    61. Leng P, Sudbery PE, Brown AJP: Rad6p represses yeast-hypha morphogenesis in the human fungal pathogen Candida albicans. Mol Microbiol 2000, 35(5):1264-1275.
    62. Brand A, Lee K, Veses V, Gow NAR: Calcium homeostasis is required for contact-dependent helical and sinusoidal tip growth in Candida albicans hyphae. Mol Microbiol 2009, 71(5):1155-1164.
    63. Nobile CJ, Bruno VM, Richard ML, Davis DA, Mitchell AP: Genetic control of chlamydospore formation in Candida albicans. Microbiology 2003, 149(Pt 12):3629-3637.
    64. Kang CM, Jiang YW: Genome-wide survey of non-essential genes required for slowed DNA synthesis-induced filamentous growth in yeast. Yeast 2005, 22(2):79-90.
    65. Martin R, Walther A, Wendland H: Ras1-induced hyphal development in Candida albicans requires the formin Bni1. Eukaryotic Cell 2005, 4(10):1712-1724.
    66. Ghiselli G: SMC3 knockdown triggers genomic instability and p53-dependent apoptosis in human and zebrafish cells. Mol Cancer 2006, 5:-.
    67. Duckett CS, Perkins ND, Kowalik TF, Schmid RM, Huang ES, Baldwin AS, Jr., Nabel GJ: Dimerization of NF-KB2 with RelA(p65) regulates DNA binding, transcriptional activation, and inhibition by an I kappa B-alpha (MAD-3). Mol Cell Biol 1993, 13(3):1315-1322.
    68. Liden J, Ek A, Palmberg L, Okret S, Larsson K: Organic dust activates NF-kappa B in lung epithelial cells. Resp Med 2003, 97(8):882-892.
    69. Anto RJ, Maliekal TT, Karunagaran D: L-929 cells harboring ectopically expressed RelA resist curcumin-induced apoptosis. J Biol Chem 2000, 275(21):15601-15604.
    70. Phelan PE, Mellon MT, Kim CH: Functional characterization of full-length TLR3, IRAK-4, and TRAF6 in zebrafish (Danio rerio). Mol Immunol 2005, 42(9):1057-1071.
    71. Nykjaer A, Willnow TE, Petersen CM: p75(NTR)-live or let die. Curr Opin Neurobiol 2005, 15(1):49-57.
    72. Grassme H, Jendrossek V, Gulbins E: Molecular mechanisms of bacteria induced apoptosis. Apoptosis 2001, 6(6):441-445.
    73. Weinrauch Y, Zychlinsky A: The induction of apoptosis by bacterial pathogens. Annu Rev Microbiol 1999, 53:155-187.
    74. Weissman Z, Kornitzer D: A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization. Mol Microbiol 2004, 53(4):1209-1220.
    75. Almeida RS, Wilson D, Hube B: Candida albicans iron acquisition within the host. Fems Yeast Res 2009, 9(7):1000-1012.
    76. Fratti RA, Belanger PH, Ghannoum MA, Edwards JE, Jr., Filler SG: Endothelial cell injury caused by Candida albicans is dependent on iron. Infect Immun 1998, 66(1):191-196.
    77. Almeida RS, Brunke S, Albrecht A, Thewes S, Laue M, Edwards JE, Filler SG, Hube B: the hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLoS Pathog 2008, 4(11):e1000217.
    78. Hrmova M, Drobnica L: Induction of Mycelial Type of Development in Candida-Albicans by Low Glucose-Concentration. Mycopathologia 1981, 76(2):83-96.
    79. Vidotto V, Accattatis G, Zhang Q, Campanini G, Aoki S: Glucose influence on germ tube production in Candida albicans. Mycopathologia 1996, 133(3):143-147.
    80. Hudson DA, Sascia OL, Sanders RJ, Norris GE, Edwards PJB, Sullivan PA, Farley PC: Identification of the dialysable serum inducer of germ-tube formation in Candida albicans. Microbiol-Sgm 2004, 150:3041-3049.
    81. Paranjape V, Datta A: Role of Nutritional-Status of the Cell in Ph Regulated Dimorphism of Candida-Albicans. Fems Microbiol Lett 1991, 80(2-3):333-336.
    82. Wheeler RT, Fink GR: A drug-sensitive genetic network masks fungi from the immune system. Plos Pathogens 2006, 2(4):328-339.
    83. Wheeler RT, Kombe D, Agarwala SD, Fink GR: Dynamic, Morphotype-Specific Candida albicans beta-Glucan Exposure during Infection and Drug Treatment. Plos Pathogens 2008, 4(12):-.
    84. Singleton DR, Masuoka J, Hazen KC: Cloning and analysis of a Candida albicans gene that affects cell surface hydrophobicity. J Bacteriol 2001, 183(12):3582-3588.
    85. Singleton DR, Fidel PL, Jr., Wozniak KL, Hazen KC: Contribution of cell surface hydrophobicity protein 1 (Csh1p) to virulence of hydrophobic Candida albicans serotype A cells. Fems Microbiol Lett 2005, 244(2):373-377.
    86. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13(11):2498-2504.
    87. Barsky A, Gardy JL, Hancock RE, Munzner T: Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation. Bioinformatics 2007, 23(8):1040-1042.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE